
5Unsupervised Network Alignment

5.1 Overview

Identifying the common users shared by different online social sites is a very hard task even for
humans. Manually labeling of the anchor links can be extremely challenging, expensive (in human
efforts, time, and money costs), and tedious, and the scale of the real-world online social networks
involving millions even billions of users also renders the training data labeling much more difficult.
In this chapter, we will introduce several approaches to resolve the network alignment problem based
on the unsupervised learning setting instead, where no labeled training data will be needed in model
building.

Given two heterogeneous online social networks, which can be represented as G(1) = (V(1), E (1))

and G(2) = (V(2), E (2)), respectively, the unsupervised network alignment problem aims at inferring
the set of potential anchor links connecting the shared users between networks G(1) and G(2). Let
U (1) ⊂ V(1) and U (2) ⊂ V(2) be the user sets in these two networks, respectively, we can represent the
set of potential anchor links between networksG(1) andG(2) asA = U (1) ×U (2). In the unsupervised
network alignment problem, among all the potential anchor links in set A = U (1) × U (2), we want to
infer which one in set A should exist in the real world.

In this chapter, we will study the network alignment problem based on the unsupervised learning
setting with no training data at all. We will first introduce several unsupervised heuristics for
measuring the similarities of user accounts across networks, which can serve as the basic predictors
of anchor links across networks. After that we will introduce the unsupervised network alignment
problem of homogeneous networks especially, and talk about the existing approaches proposed to
address the problem. To handle the heterogeneous social networks involving both complex structures
and different types of attribute information, a state-of-the-art unsupervised heterogeneous network
alignment algorithm will be introduced afterwards. In the real-world social networks, besides the
users, many other types of information entities can also be shared across different networks, like
products, videos, and POIs (points of interest). Identifying multiple types of common information
entities shared across social networks simultaneously is called the network co-alignment problem. A
novel unsupervised network co-alignment model will be introduced to solve the problem. Besides
the pairwise networks, aligning multiple (more than 2) networks simultaneously is called the multiple
network alignment problem. In themultiple network alignment problem, preserving the consistency of
the alignment results among all these networks is necessary, which will introduce more constraints on
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166 5 Unsupervised Network Alignment

the unsupervised alignment model at the same time. Finally, we will introduce a novel unsupervised
multiple network alignment algorithm at the end of this chapter.

5.2 Heuristics Based Unsupervised Network Alignment

To infer the correspondence relationships of the shared users between different social networks, many
different types of unsupervised heuristics can be applied. Besides the similarity measures (or features)
calculated based on the social network structures, location check-ins, textual contents, and temporal
activities of users introduced in Sect. 4.3.1, in this section we will introduce two other categories
of unsupervised network alignment heuristics based on the user name and user profile information,
respectively.

5.2.1 User Names Based Network Alignment Heuristics

Formally, given a user pair u(1)i and u
(2)
j from networks G(1) and G(2), respectively, we can represent

their names in these two networks as name(u(1)i ) and name(u(2)j ). Generally, user names can be
denoted as strings involving one or several words. To help their friends identify them, users tend
to use their real names in many online social networks, like Facebook, Twitter, and LinkedIn. Several
heuristics can be proposed to infer the user anchor links across networks with user names. Exact
matching of user names is the most intuitive idea, which is based on the assumption that users tend to
use exactly the same names in different sites. For instance, if the names of u(1)i and u

(2)
j are exactly

the same (i.e.,name(u(1)i ) = name(u(2)j )), then u
(1)
i and u

(2)
j are highly likely to be the same person.

However, in real-world social networks, such an assumption can be violated with certain degrees
and this method may not perform well due to several reasons:

• Abbreviated Name: For some reasons, users tend to abbreviate their names in some sites. For
instance, name “Anne-Marie Slaughter” can be written as “A.-M. Slaughter” by using the initials
of the first name instead.

• Order-Reversed Name: Depending on the sites, user names can display in different ways. For
instance, names “Anne-Marie Slaughter” and “Slaughter, Anne-Marie” may refer to the same user,
but the string representations have flipped the first and last name, which may create many problems
for exact name matching.

• Alias Names: Some people can have their alias names, like the nick name. For example, “Michael”
and “Mike” may refer to the same person, but they are written in totally different ways.

• Duplicated Names: For many common names, lots of users may have exactly the same name, e.g.,
“James,” “Michael,” “Robert,” “Mary,” “Maria,” and “David.” Simply name matching may not be
sufficient to identify the exact shared users accounts.

To overcome these aforementioned problems (except duplicated names), in this part, we will
introduce the unsupervised network alignment heuristics based on the user names to compute the
user similarities. For the duplicated name case, besides the user name information, we will introduce
several other network alignment heuristics by using the user profile information in the following
subsection.
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5.2 Heuristics Based Unsupervised Network Alignment 167

5.2.1.1 Name Similarity Metrics
Instead of using the exact name matching, name similarity metrics are usually applied to calculate how
likely the users are the same person based on their names. Currently, the name similarity metrics can
be categorized into three groups: character based similarity metrics, token based similarity metrics,
and phonetic similarity metrics.

Character Based Similarity Metrics Character based similarity metrics are usually used to handle
typographical differences of user name strings, and the well-known character based similarity metrics
include

• Edit Distance: Given two strings, the edit distance [31, 34, 41] denotes the minimal number of
insertion, deletion, and substitution edit operations of characters needed to transform one string
into the other one. Given two user names, if the edit distance between them is short, they will be
similar to each other.

• Damerau-Levenshtein Distance:Damerau-Levenshtein distance [28] is a variation of edit distance.
Besides the basic insertion, deletion, and substitution edit operations, it also takes the character
transposition as another elementary edit operation.

• Jaro Distance: Jaro distance [22] is also a type of edit distance computed based on the number
of shared characters between strings and the number of transpositions operations. Formally, given
two strings s1 and s2, the Jaro Distance between them is defined as

dj (s1, s2) =
{
0, if m = 0,
1
3

(
m
|s1| +

m
|s2| +

m−t
m

)
, otherwise,

(5.1)

where m denotes the number of matching characters between s1 and s2, t denotes half the number
of transpositions to change one shared character sequence into the other, and |s1|, |s2| denote
the length of s1 and s2, respectively. Two characters from s1 and s2, respectively, are considered
matching only if they are the same and their indexes are not farther than

⌊
max(|s1|,|s2|)

2

⌋
− 1 way.

We will introduce more information about the Jaro distance in Example 5.2.
• Jaro-Winkler Distance: Jaro-Winkler distance [42] is a variant of Jaro distance, and it uses a prefix

scale p to give more favorable ratings to strings that match from the beginning for a set prefix
length. Given two strings s1 and s2, the Jaro-Winkler distance between them is defined as

dw(s1, s2) = dj (s1, s2)+ l · p · (1 − dj (s1, s2)), (5.2)

where l is the length of common prefix at the start of the string up to a maximum of four characters,
and p is a constant scaling factor for how much the score is adjusted upward for having common
prefixes (whose standard value is p = 0.1).

• Longest Common Sub-string (LCS): LCS [21] repeatedly identifies and removes the longest
common sub-string from two names, whose total length can denote the similarity between the
user names. For instance, the total length of shared sub-string (involving more than 1 character) by
input names “Michael Jordan” and “Yordan Michelin” is 11 (the shared sub-strings include “mich,”
“el,” and “ordan”).
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168 5 Unsupervised Network Alignment

Example 5.1 For instance, given two user name strings “Michael Jordan” and “Mike Jordan,” we can
convert “Mike Jordan” into “Michael Jordan” with 4 edits: 1 substitution and 3 insertion:

• substitute “k” with “c”: with this operation, we can convert “Mike Jordan” to “Mice Jordan”;
• insert “h” after “c”: with this operation, we will be able to convert “Mice Jordan” to “Miche

Jordan”;
• insert “a” after “h”: with this operation, we can convert “Miche Jordan” to “Michae Jordan”;
• insert “l” after “e”: with this operation, we will be able to successfully convert “Michae Jordan”

into “Michael Jordan.”

Example 5.2 Given two strings “TRACE” and “CRATE,” we can identify the matching characters
between them are “R,” “A,” and “E” andm = 3. Here, characters “T” and “C” are shared by these two
strings, but they are not considered to be matching characters since their index distance is 3, which is
father than

⌊
max(5,5)

2

⌋
− 1 = 1 away. Considering that the matching characters “R-A-E” are already

in the same order in both of these two strings, so no transpositions are needed, and we have t = 0.
Therefore, the Jaro distance between “TRACE” and “CRATE” is

1
3

(
m

|s1|
+ m

|s2|
+ m − t

m

)

= 1
3

(
3
5
+ 3

5
+ 3 − 0

3

)

= 11
15

(5.3)

Token Based Similarity Metrics The character based similarity metrics may fail to handle the
names with first and last name flipped. To handle such a case, a set of token based similarity metrics
are proposed, which divide name strings into a set of tokens (i.e., words) instead.

• Common Token: Common token metric counts the number of common words shared by different
user names. Given two user names s1 and s2, we can transform them into two sets of tokens in
advance, which can be denoted as set(s1) and set(s2), respectively. The number of common tokens
[44] shared by them can be denoted as

CT(set(s1), set(s2)) = |set(s1) ∩ set(s2)|. (5.4)

• Token based Jaccard’s coefficient: In some cases, people can have very long names, like “Jose
Arcadio Buendia” and “Jose Arcadio,” which share two common tokens but actually refer to
different people in “One Hundred Years of Solitude.” Token based Jaccard’s coefficient proposes to
penalize the long names, and the score calculated for names set(s1) and set(s2) can be denoted as

TJC(set(s1), set(s2)) =
|set(s1) ∩ set(s2)|
|set(s1) ∪ set(s2)|

. (5.5)

• Token based Cosine Similarity: Cosine Similarity [5] expresses strings as term vectors, where each
word denotes a dimension in the vector representation. Formally, given two user names s1 and s2,
we can represent their token vectors as s1 and s2, respectively, and the token based cosine similarity
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5.2 Heuristics Based Unsupervised Network Alignment 169

score of the user names can be represented as

TSC(s1, s2) =
s&1 · s2

‖s1‖ · ‖s2‖
. (5.6)

• TFIDF-TCS: TFIDF denotes “Term Frequency/Inverted Document Frequency” [35], which counts
frequency of a word but also penalizes it with its occurrence in other documents. TFIDF can be
applied to weight the name’s feature vectors before using them to compute the Token based Cosine
Similarity measure. Formally, the Token based Cosine Similarity measure subject to the TFIDF
weighted user name vectors can be denoted as TFIDF-TCS.

As to the partition of names into tokens, different techniques can be applied, including specific
delimiter based partition, n-gram [8] based partition, etc. We will not introduce these name partition
methods here since it will be out of the scope of this book.

Example 5.3 For instance, given two user names s1 =“Michael Jordan” and s2=“Jordan, Michael,”
based on the character based similarity metrics, e.g., edit distance, we can compute their edit distance
to be 12. Meanwhile, by dividing the user names into tokens by separator “ ” (i.e., the space
between tokens) or “, ”, we can transform the name strings into two unit token sets set (s1) =
{Michael, Jordan} and set (s1) = {Jordan,Michael}.

According to the common token, token based Jaccard’s coefficient or token based cosine similarity
metrics, we can compute their similarity scores all to be 1.0. Viewed in such a perspective, these token
based similarity metrics can effectively amend the disadvantages of the character based similarity
metrics.

Phonetic Similarity Metrics These metrics introduced before are mostly based on the string
representation of the names. In many cases, people like to use abbreviated names based on the
pronunciation instead of the textual representations. For instance, people like to use “Mike” as a nick
name of “Michael,” which is pronounced in a very similar way but is very different in their writings.
Some phonetic similarity metrics [37] have been proposed to measure the phonetic similarity between
strings, which can be applied to compute the user name similarities as well.

• Soundex Matching: Soundex [39] is a phonetic algorithm for indexing names by sound. The
Soundex code [39] for a name consists of a letter followed by three numerical digits: the letter
is the first letter of the name, and the digits encode the remaining consonants. Given two name
strings s1 and s2, if their Soundex codes are the same, their Soundex matching will be 1; otherwise,
it will be 0.

• Soundex Similarity: Instead of exact matching the Soundex codes, Soundex similarity proposes
to count the shared characters in the Soundex codes of input strings, which is normalized by the
returned Soundex code length.

5.2.2 Profile Based Network Alignment Heuristics

In the real-world online social networks, many users will share the same name (especially the regular
names like “Mike,” “David,” etc.) and the above name based similarity metrics will fail to differentiate
these users in the alignment process. To help improve the alignment results, a set of profile based
network alignment heuristics will be introduced in this part based on the user profile information,
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170 5 Unsupervised Network Alignment

including hometown, employment history, educational records, gender, birthday, and other personal
information. Generally, these information are represented as strings as well, and it seems the string
similarity measures introduced before can also be applied here. Meanwhile, slightly different from
names, the profile information usually consists of several components and is much longer than names,
which renders the similarity metrics to be used here different from those introduced before.

• Location Distance: Given the hometown of two users from different online social networks, the
hometown locations are usually represented as strings and we can apply the character/token based
string similarity metrics introduced before to measure how close the users are in terms of geograph-
ical locations. Meanwhile, in many cases, there exist various different string representations for the
same location, e.g., “PA,” “Penn,” and “Pennsylvania,” all denote the Pennsylvania state in the
USA, which will make the introduced metrics fail to work. A better way to handle the hometown
information is using the online Map APIs to transform the hometown strings to the (latitude,
longitude) coordinate pairs, and calculate the geographical distance between the coordinate pairs
as the metric instead. Several different Map APIs are available online, like Google Maps,1 Bing
Maps,2 Apple Maps.3

• Birthday: Online social networks may ask for users’ birthday, and will offer some special services
for users on their birthday by either sending notifications to friends online or generating some
celebration posts on their homepage timeline. User’s birthday is usually represented as a string
containing the year, month, and day. Besides the string similarity metrics, these birthday strings
can be transformed into a date object, based on which we can calculate the birthday closeness by
computing how many days the users’ birthdays are apart from each other. The open source toolkits
that can handle the date related strings include Python datetime4 and Java Date (java.util.Date5).

• Vector Space Model: For the remaining information represented in strings, they can be handled with
either exact matching or character based similarity metrics for the gender information, token based
similarity metrics and phonetic similarity metrics for the employment and educational records.
To deal with such long string information together, we can treat user profile as a document and
the vector space model [36] can be applied here. Vector space model or term vector model is
an algebraic model for representing textual documents as vectors of identifiers. Given two users’
profile information, one of user’s profile can be treated as the query “profile document” and used
to retrieve the similar “profile document” from another network. The similarity metric frequently
used in the vector space model is cosine similarity, and TFIDF can also be applied to weight the
feature vector representations prior to the similarity score computation.

5.3 Pairwise Homogeneous Network Alignment

Given two homogeneous networks G(1) and G(2), matching the nodes between them is an extremely
challenging task, which is also called the graph isomorphism problem [12,30]. By this context so far,
no efficient algorithm exists that can address the problem in polynomial time. In this part, we will

1https://developers.google.com/maps/.
2https://www.bingmapsportal.com.
3https://developer.apple.com/maps/.
4https://docs.python.org/2/library/datetime.html.
5https://www.tutorialspoint.com/java/util/java_util_date.htm.
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introduce several heuristics based network alignment models, and a mapping matrix inference model
to solve the pairwise homogeneous network alignment problem.

5.3.1 Heuristics Based Network Alignment Model

The information generated by users’ online social activities can indicate their personal characteristics.
Besides the features extracted in Sect. 4.3.1 and user name/profile based heuristics introduced in
Sect. 5.2, in this part, we will introduce a new category of measures, Relative Centrality Difference
(RCD) [47, 48], which computes the similarity of user node centrality scores in different networks
as the alignment results. Based on the assumption that “users with similar centrality scores are
more likely to be the same user,” the relative centrality difference can also be applied to solve the
unsupervised network alignment problem.

The centrality concept introduced in Chap. 3.3.2 denotes the importance of nodes in the network
structured data. Here, we assume that important users in one social network (like celebrities, movie
stars and politicians) will be important as well in other networks. Viewed in such a perspective, the
centrality of users in different networks can be an important signal for inferring the anchor links across
networks.

Definition 5.1 (Relative Centrality Difference) Given two users u(1)i , u(2)j from networks G(1) and

G(2), respectively, let C(u(1)i ) and C(u
(2)
j ) denote the centrality scores of these two users, we can

define the relative centrality difference (RCD) between them as

RCD
(
u
(1)
i , u

(2)
j

)
=



1+
|C
(
u
(1)
i

)
− C

(
u
(2)
j

)
|

(
C
(
u
(1)
i

)
+ C

(
u
(2)
j

))
/2





−1

. (5.7)

Depending on the centrality measures applied here, different types of relative centrality difference
measures can be defined. For instance, if we use node degree [1, 6] as the centrality measure, the
relative degree difference can be represented as

RDD
(
u
(1)
i , u

(2)
j

)
=



1+
|D
(
u
(1)
i

)
− D

(
u
(2)
j

)
|

(
D
(
u
(1)
i

)
+D

(
u
(2)
j

))
/2





−1

. (5.8)

Meanwhile, if the eigen-centrality [6, 7] definition is adopted here, we can represent the nodes
relative eigen-centrality difference measure as

RECD
(
u
(1)
i , u

(2)
j

)
=



1+
|Ceigen

(
u
(1)
i

)
− Ceigen

(
u
(2)
j

)
|

(
Ceigen

(
u
(1)
i

)
+ Ceigen

(
u
(2)
j

))
/2





−1

. (5.9)

Example 5.4 Based on the input homogeneous network structures shown in Fig. 5.1, if the relative
centrality difference (with degree as the centrality measure) is adopted, we can compute the RDD
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Fig. 5.1 An example of
input pairwise
homogeneous networks
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scores for the three potential anchor links incident to EllaF as follows:

RDD(EllaF , BobT ) =
(
1+ |D(EllaF ) − D(BobT )|

(D(EllaF )+D(BobT )) /2

)−1

=
(
1+ |1 − 3|

(1+ 3) /2

)−1

= 1
2

(5.10)

RDD(EllaF ,EllaT ) =
(
1+ |D(EllaF ) − D(EllaT )|

(D(EllaF )+D(EllaT )) /2

)−1

=
(
1+ |1 − 1|

(1+ 1) /2

)−1

= 1 (5.11)

RDD(EllaF ,DavidT ) =
(
1+ |D(EllaF ) − D(DavidT )|

(D(EllaF )+D(DavidT )) /2

)−1

=
(
1+ |1 − 2|

(1+ 2) /2

)−1

= 3
5

(5.12)
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Therefore, compared with BobT andDavidT , EllaF is more likely to be connected by the anchor
link with EllaT , since they have a closer node degree (both with degree 1) in the input network
structures.

5.3.2 IsoRank

Another model called IsoRank [38] initially proposed to align the biomedical networks can also be
applied to align the homogeneous social networks. The IsoRank algorithm has two stages. It first
associates a score with each possible anchor link between user nodes across networks. For instance,
we can denote r(u(1)i , u

(2)
j ) as the reliability score of a potential anchor link (u

(1)
i , u

(2)
j ) between the

networks G(1) and G(2), and all such scores can be organized into a vector r of length |U (1)|× |U (2)|.
The second stage of IsoRank is to construct the mapping for the networks by extracting information
from the vector r.

Definition 5.2 (Reliability Score) The reliability score r(u(1)i , u
(2)
j ) of the anchor link (u

(1)
i , u

(2)
j ) is

highly correlated with the support provided by the neighbors of users u(1)i and u(2)j . Therefore, we can

define score r(u(1)i , u
(2)
j ) as

r
(
u
(1)
i , u

(2)
j

)
=

∑

u
(1)
m ∈Γ

(
u
(1)
i

)

∑

u
(2)
n ∈Γ

(
u
(2)
i

)

1

|Γ
(
u
(1)
i

)
||Γ
(
u
(2)
j

)
|
r
(
u(1)m , u(2)n

)
, (5.13)

where sets Γ (u
(1)
i ) and Γ (u

(2)
i ) represent the neighbors of users u(1)i and u(1)i , respectively, in networks

G(1) and G(2).

The above definition is for the regular unweighted networks. Meanwhile, if the studied networks
are weighted, and all the intra-network connections like (u

(1)
i , u

(1)
m ) are associated with a weight

w(u
(1)
i , u

(1)
m ), we can represent the reliability measure of the weighted network as

r
(
u
(1)
i , u

(2)
j

)

=
∑

u
(1)
m ∈Γ

(
u
(1)
i

)

∑

u
(2)
n ∈Γ

(
u
(2)
j

)

w
(
u
(1)
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(1)
m

)
w
(
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(2)
j , u

(2)
n

)
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(2)
n

)
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(
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(1)
i
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(
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(1)
i , u

(1)
p

))(∑
u
(2)
q ∈Γ

(
u
(2)
j

)w
(
u
(2)
j , u

(2)
q

)) ,

(5.14)

As we can see, Eq. (5.13) is a special case of Eq. (5.14) with link weight w(u
(1)
i , u

(1)
j ) = 1 for u(1)i ∈

U (1) and u
(2)
j ∈ U (2).

To simplify the problem settings, we will take the unweighted social networks as an example in the
following analysis, and Eq. (5.13) can also be rewritten with a linear algebra as follows:

r = Ar, (5.15)
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where the matrix A is of dimension (|U (1)||U (2)|) × (|U (1)||U (2)|), and the row and column indexes
correspond to different potential anchor links across the networks. The matrix entry

A(i, j)(p, q) =






1
|Γ
(
u
(1)
i

)
||Γ
(
u
(2)
j

)
|
, if

(
u
(1)
i , u

(1)
p

)
∈ E (1),

(
u
(2)
j , u

(2)
q

)
∈ E (2),

0, otherwise,
(5.16)

which corresponds the anchor links (u(1)i , u
(2)
j ) and (u(1)p , u

(2)
q ). As we can see, the above equation has

a very similar representation to the stationary equation of random walk, whose solutions correspond
to the principal eigenvector of the matrix A corresponding to the eigenvalue 1. For more information
about the random walk model, please refer to Chap. 3.3.3.3.

Example 5.5 Here, we will use an example from [38] to illustrate the IsoRank algorithm. Formally,
given the two input graphs as shown in Fig. 5.2, we can represent the reliability score of the potential
anchor links across the networks with the following equations:

raa′ = 1
4
rbb′, (5.17)

rbb′ = 1
3
rac′ +

1
3
ra′c + raa′ + 1

9
rcc′, (5.18)

rcc′ =
1
4
rbb′ + 1

2
rbe′ +

1
2
rbd ′ + 1

2
reb′ + 1

2
rdb′ + ree′ + red ′ + rde′ + rdd ′ , (5.19)

rdd ′ = 1
9
rcc′, (5.20)

ree′ =
1
9
rcc′ . (5.21)

By assigning the reliability scores of all these anchor links with random initial values and updating the
scores according to the above equations, we can achieve the stationary score values of all the links as
shown in the right matrix (the reliability score vector r is reshaped into a matrix for ease of viewing).
For the entries without values, they are filled with the 0 by default.

IsoRank adopts a greedy strategy to select the anchor links from the reliability score matrix subject
to the one-to-one cardinality constraint, where the anchor links corresponding to the largest reliability
score will be selected first and no other anchor links incident to these selected nodes will be selected
in the following rounds. For instance, among all the potential anchor links in this example, the

Fig. 5.2 An example of
IsoRank
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anchor links (c, c′), (b, b′), (a, a′) will be selected first. As indicated in [38], by using sequence
information, the ambiguities in the remaining anchor links (d, d ′), (d, e′), (e, d ′), and (e, e′) with the
same reliability scores can be resolved successfully.

5.3.3 IsoRankN

IsoRankN algorithm introduced in [29] is an extension to IsoRank, which uses a different method of
spectral clustering on the induced graph of pairwise alignment scores. The new approach provides
significant advantages not only over the original IsoRank algorithm but also over other methods.
IsoRankN has four main steps: (1) initial network alignment with IsoRank, (2) star spread, (3) spectral
partition, and (4) star merging. Next, we will introduce these four steps in detail.

5.3.3.1 Initial Network Alignment
Given k networks G(1),G(2), . . . ,G(k), IsoRankN computes the local alignment scores of node
pairs across networks with the IsoRank algorithm. For instance, if the networks are unweighted, the
alignment score between nodes u(i)l and u

(j)
m in networks G(i), G(j) can be denoted as:

r
(
u
(i)
l , u

(j)
m

)
=

∑

u
(i)
p ∈Γ

(
u
(i)
l

)

∑

u
(j)
q ∈Γ

(
u
(j)
m

)

1

|Γ
(
u
(i)
l

)
||Γ
(
u
(j)
m

)
|
r
(
u(i)p , u

(j)
q

)
, (5.22)

It will lead to a weighted k-partite graph, where the links denote the anchor links across networks
weighted by the reliability scores calculated above. If the networks G(1), . . . G(k) are all complete
graphs, the alignment results will be the maximum weighted cliques. However, in the real world, such
an assumption can hardly hold, and IsoRankN proposes to use a technique called “Star Spread” to
select a subgraph with high weights.

5.3.3.2 Star Spread
For each node in a network, e.g., u(i)l in network G(i), the set of nodes from all the other networks
connected with u

(i)
l via potential anchor links can be denoted as set Γ (u

(i)
l ). The nodes in Γ (u

(i)
l )

can be further pruned by removing those connected with weak anchor links. Here, the term “weak”
denotes the anchor links with low reliability scores calculated with IsoRank. Formally, among all
the nodes in Γ (u

(i)
l ), we can denote the node connected to u

(i)
l with the strongest link as v∗ =

arg
v∈Γ (u

(i)
l )

max r(u(i)l , v). For all the nodes with weights lower than β · r(u(i)l , v∗) will be removed

from Γ (u
(i)
l ) (where β is a threshold parameter), and the remaining nodes together with u(i)l will form

a star structured graph S
u
(i)
l
.

5.3.3.3 Spectral Partition
For each node u

(i)
l , IsoRankN aims at selecting a subgraph S∗

u
(i)
l

from the star-structured graph

S
u
(i)
l
, which contains the highly weighted neighbors of u(i)l . To achieve such an objective, IsoRankN

proposes to identify a subgraph with a low conductance from S
u
(i)
l

instead.
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Formally, given a network G = (V, E), let S ⊂ V denote a node subset of G. The conductance of
the subgraph involving S can be formally represented as

φ(S) =
∑

u∈S
∑

v∈S̄ ru,v

min(vol(S), vol(S̄))
, (5.23)

where S̄ = V \ S , and vol(S) =∑u∈S
∑

v∈V ru,v .
IsoRankN points out that a node subset S containing node u

(i)
l can be computed effectively and

efficiently with the personalized PageRank algorithm starting from node u
(i)
l , which will not be

introduced here.

5.3.3.4 Star Merging
Considering that links in the selected star graph S∗

u
(i)
l

are all the anchor links across networks, there

exist no intra-network links at all, e.g., the links in network G(i) only. However, in many cases,
there may exist multiple nodes corresponding to the same entity inside the network as well. To solve
such a problem, IsoRankN proposes a star merging step to combine several star graphs together, e.g.,
S∗
u
(i)
l

and S∗
u
(j)
m

.

Formally, given two star graphs S∗
u
(i)
l

and S∗
u
(j)
m

if the following conditions both hold, S∗
u
(i)
l

and S∗
u
(j)
m

can be merged into one star graph.

∀v ∈ S∗
u
(j)
m

\ {u(j)m }, r
(
v, u

(i)
l

)
≥ β · max

v′∈Γ
(
u
(i)
l

) r
(
v′, u(i)l

)
, (5.24)

∀v ∈ S∗
u
(i)
l

\ {u(i)l }, r
(
v, u

(j)
m

)
≥ β · max

v′∈Γ
(
u
(j)
m

) r
(
v′, u(j)m

)
. (5.25)

Via these aforementioned four steps, IsoRankN will be able to compute the alignment among
multiple input networks, where steps (3) and (4) will repeat until all the nodes are assigned to a
cluster.

5.3.4 Matrix Inference Based Network Alignment

For homogeneous network alignment, we will introduce another algorithm based on matrix inference
at the end of this section. Formally, the set of anchor links actually define a mapping of nodes across
networks, which is subject to the one-to-one constraint.

Formally, given a homogeneous network G(1) = (V(1), E (1)), its structure can be organized as
the adjacency matrix AG(1) ∈ R|V(1)|×|V(1)|. If network G(1) is unweighted, then matrix AG(1) will
be a binary matrix and entry AG(1) (i, p) = 1 (or AG(1) (u

(1)
i , u

(1)
p ) = 1) iff the correspond social

link (u
(1)
i , u

(1)
p ) exists in the link set E (1). In the case that the network is weighted, the entries, e.g.,

AG(1) (i, p), will denote the weight of link (u
(1)
i , u

(1)
p ) and the entry will be 0 if the link (u

(1)
i , u

(1)
p )

doesn’t exist. The concept of adjacency matrix has been introduced when talking about the network
representations in Sect. 3.2.1. In a similar way, we can also represent the social adjacency matrixAG(2)

for network G(2) as well.
The network alignment problem actually aims at inferring a one-to-one node mappings, that can

project nodes from one network to the other network. For instance, we can denote the mapping
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between networksG(1) toG(2) as f : V(1) → V(2). Via the mapping f , besides the nodes, the network
structure can be projected across networks as well. For instance, given a social connection (u(1)i , u

(1)
p )

in G(1), we can represent its corresponding projected connection in G(2) as (f (u(1)i ), f (u
(1)
p )).

Based on the assumption that the mapped nodes should have similar network connection patterns
across different networks, via the mapping f , we can denote the projection error as the network
structure differences introduced by the projection between G(1) and G(2), i.e.,

L(G(1),G(2), f ) =
∑

u
(1)
i ∈V(1)

∑

u
(1)
p ∈V(1)

(
AG(2)

(
u
(1)
i , u(1)p

)
− AG(1)

(
f
(
u
(1)
i

)
, f
(
u(1)p

)))2
. (5.26)

Formally, such a node projection can be represented as a matrix P ∈ {0, 1}|V(1)|×|V(2)| as well,
where entry P(i, j) = 1 iff anchor link (u

(1)
i , u

(2)
j ) exists between networks G(1) and G(2). Via the

matrix P, we can represent the above loss term as

L(AG(1) ,AG(2) ,P) =
∥∥∥P&AG(1)P − AG(2)

∥∥∥
2
. (5.27)

If there exists a perfect mapping of users across networks, we can obtain a mapping matrix P
introducing zero loss in the above function, i.e., L(AG(1) ,AG(2) ,P) = 0. However, in the real-world
scenarios, few networks can be perfectly aligned together. Inferring the optimal mapping matrix P
which can introduce the minimum loss can be represented as the following objective function

P∗ = argmin
P

∥∥∥P&AG(1)P − AG(2)

∥∥∥
2
, (5.28)

where the matrix P is usually subject to some constraints, like P is binary and each row and column
should contain at most one entry being filled with value 1.

In general, it is not easy to find the optimal solution to the above objective function, as it is a purely
combinatorial optimization problem. Identifying the optimal solution requires the enumeration of all
the potential user mapping across different networks. In [40], Umeyama provides an algorithm that
can solve the function with a nearly optimal solution based on eigen-decomposition. If the readers are
interested in the solution, please refer to [40] for more detailed information. In the following sections,
we will introduce an approximation method to address a similar optimization problem by relaxing the
hard binary constraint to real values instead.

5.4 Multiple Homogeneous Network Alignment with Transitivity Penalty

The works introduced in the previous section are all about pairwise network alignment, which focus
on the alignment of two networks only. However, in the real world, people are normally involved in
multiple (usually more than two) social networks simultaneously. In this section, we will focus on the
simultaneous alignment problem of multiple (more than two) networks, which is called the M-NASA
problem formally [47].
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5.4.1 Multiple Network Alignment ProblemDescription

Example 5.6 To help illustrate the M-NASA problem more clearly, we also give an example in
Fig. 5.3, which involves three different social networks (i.e., networks I, II, and III). Users in these
three networks are all anonymized and their names are replaced with randomly generated meaningless
identifiers. Each pair of these three anonymized networks can actually share some common users,
e.g., “David” participates in both networks I and II simultaneously, “Bob” is using networks I and
III concurrently, and “Charles” is involved in all these three networks at the same time. Besides
these shared anchor users, in these three partially aligned networks, some users are involved in one
single network only (i.e., the non-anchor users [49]), e.g., “Alice” in network I, “Eva” in network
II, and “Frank” in network III. The M-NASA problem studied in this section aims at discovering the
anchor links (i.e., the dashed bi-directional red lines) connecting anchor users across these three social
networks.

The significant difference of M-NASA from existing pairwise network alignment problems is due
to the “transitivity law” that anchor links follow. In traditional set theory [26], a relation R is defined
to be a transitive relation in domain X iff ∀a, b, c ∈ X , (a, b) ∈ R∧ (b, c) ∈ R → (a, c) ∈ R. If we
treat the union of user account sets of all these social networks as the target domainX and treat anchor
links as the relation R, then anchor links depict a “transitive relation” among users across networks.
We can take the networks shown in Fig. 5.3 as an example. Let u be a user involved in networks I,
II, and III simultaneously, whose accounts in these networks are uI , uII , and uIII , respectively. If
anchor links (uI , uII ) and (uII , uIII ) are identified in aligning networks (I, II) and networks (II, III),
respectively (i.e., uI , uII , and uIII are discovered to be the same user), then anchor link (uI , uIII )

should also exist in the alignment result of networks (I, III) as well. In the M-NASA problem, we need
to guarantee the inferred anchor links can meet the transitivity law.

Formally, the M-NASA problem can be formally defined as follows. Given the n isolated
anonymized social networks {G(1),G(2), . . . ,G(n)}, the M-NASA problem aims at discovering the
anchor links among these n networks, i.e., the undirected anchor link setsA(1,2),A(1,3), . . . ,A(n−1,n).
Networks G(1),G(2), . . . ,G(n) are partially aligned and the constraint on anchor links in
A(1,2),A(1,3), . . . ,A(n−1,n) is one-to-one, which also follow the transitivity law.

Fig. 5.3 An example of
multiple anonymized
partially aligned social
networks
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To solve the M-NASA problem, a novel network alignment framework UMA (Unsupervised Multi-
network Alignment) proposed in [47] will be introduced in this section. UMA addresses the M-NASA
problem with two steps: (1) unsupervised transitive anchor link inference across multi-networks, and
(2) transitive multi-network matching to maintain the one-to-one constraint. In step (1), UMA infers
a set of potential anchor links with unsupervised learning techniques by minimizing the friendship
inconsistency and preserving the alignment transitivity property across networks. In step (2), UMA

keeps the one-to-one constraint on anchor links by selecting those which can maximize the overall
existence probabilities while maintaining the matching transitivity property at the same time. Next,
we will introduce these two steps in great detail.

5.4.2 UnsupervisedMultiple Network Alignment

In this part, we will introduce the first step of the UMA framework. We will first introduce the problem
setting and objective function for pairwise network alignment based on matrix inference, which will
be extended to the multiple network settings subject to the transitivity law. The integrated objective
function can be addressed by relaxing the hard binary constraints, and the approximated solution will
serve as the input for the second step of UMA to be introduced in Sect. 5.4.3.

5.4.2.1 Unsupervised Pairwise Network Alignment
Anchor links between any two given networks G(i) and G(j) actually define a one-to-one mapping
(of users and social links) between G(i) and G(j). To evaluate the quality of different inferred
mappings (i.e., the inferred anchor links), two new concepts of cross-network Friendship Consis-
tency/Inconsistency will be introduced here. The optimal inferred anchor links are those which can
maximize the Friendship Consistency (or minimize the Friendship Inconsistency) across networks.

As introduced in Sect. 5.3.4, given two partially aligned social networks G(i) = (U (i), E (i)) and
G(j) = (U (j), E (j)), we can represent their corresponding social adjacency matrices to be S(i) ∈
R|U (i)|×|U (i)| and S(j) ∈ R|U (j)|×|U (j)|, respectively.

Meanwhile, given the anchor link set A(i,j) ⊂ U (i) × U (j) between networks G(i) and G(j), the
binary transitional matrix defined based on A(i,j) can be represented as T(i,j) ∈ {0, 1}|U (i)|×|U (j)|,
where T(i,j)(l, m) = 1 iff link (u

(i)
l , u

(j)
m ) ∈ A(i,j), u(i)l ∈ U (i), u(j)m ∈ U (j). The binary

transitional matrix from G(j) to G(i) can be defined in a similar way, which can be represented as
T(j,i) ∈ {0, 1}|U (j)|×|U (i)|, where (T(i,j))& = T(j,i) as the anchor links between G(i) and G(j) are
undirected. Considering that anchor links have an inherent one-to-one constraint, each row and each
column of the binary transitional matrices T(i,j) and T(j,i) should have at most one entry filled with
1, which will pose a constraint on the inference space of potential binary transitional matrices T(i,j)

and T(j,i).
Meanwhile, the friendship inconsistency can be defined as the number of non-shared social links

between those mapped from G(i) and the original links in G(j). Based on the inferred anchor
transitional matrix T(i,j), the introduced friendship inconsistency between networks G(i) and G(j)

can be represented as:
∥∥∥(T(i,j))&S(i)T(i,j) − S(j)

∥∥∥
2

F
, (5.29)
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where ‖·‖F denotes the Frobenius norm. And the optimal binary transitional matrix T̄(i,j), which can
lead to the minimum friendship inconsistency can be represented as follows:

T̄(i,j) = argminT(i,j)

∥∥∥(T(i,j))&S(i)T(i,j) − S(j)
∥∥∥
2

F
,

s.t. T(i,j) ∈ {0, 1}|U (i)|×|U (j)|,

T(i,j)1|U
(j)|×1 ! 1|U

(i)|×1,

(T(i,j))&1|U
(i)|×1 ! 1|U

(j)|×1, (5.30)

where the last two equations are added to maintain the one-to-one constraint on anchor links. The
inequality X ! Y holds iff X is of the same dimensions as Y and every entry in X is no greater than
the corresponding entry in Y.

5.4.2.2 Multiple Network Alignment with Transitivity Constraint
Isolated network alignment can work well in addressing the alignment problem of two social
networks. However, in the M-NASA problem studied in this section, multiple social networks (more
than two) social networks are to be aligned simultaneously. Besides minimizing the friendship
inconsistency between each pair of networks, the transitivity property of anchor links also needs to be
preserved in the transitional matrices inference.

The transitivity property should hold for the alignment of any n networks, where the minimum of
n is 3. To help illustrate the transitivity property more clearly, we will use three network alignment
as an example to introduce the M-NASA problem, which can be easily generalized to the case of n
networks alignment. Let G(i), G(j), and G(k) be three social networks to be aligned concurrently. To
accommodate the alignment results and preserve the transitivity property, a new alignment transitivity
penalty is introduced as follows:

Definition 5.3 (Alignment Transitivity Penalty) Let T(i,j), T(j,k), and T(i,k) be the inferred binary
transitional matrices from G(i) to G(j), from G(j) to G(k) and from G(i) to G(k), respectively,
among these three networks. The alignment transitivity penalty C({G(i),G(j),G(k)}) introduced by
the inferred transitional matrices can be quantified as the number of inconsistent social links being
mapped from G(i) to G(k) via two different alignment paths G(i) → G(j) → G(k) and G(i) → G(k),
i.e.,

C({G(i),G(j),G(k)})

=
∥∥∥(T(j,k))&(T(i,j))&S(i)T(i,j)T(j,k) − (T(i,k))&S(i)T(i,k)

∥∥∥
2

F
. (5.31)

Alignment transitivity penalty is a general penalty concept and can be applied to n networks
{G(1),G(2), . . . ,G(n)}, n ≥ 3 as well, which can be defined as the summation of penalty introduced
by any three networks in the set, i.e.,

C({G(1),G(2), . . . ,G(n)})

=
∑

∀{G(i),G(j),G(k)}⊂{G(1),G(2),...,G(n)}
C({G(i),G(j),G(k)}). (5.32)
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The optimal binary transitional matrices T̄(i,j), T̄(j,k), and T̄(k,i) which can minimize friendship
inconsistency and the alignment transitivity penalty at the same time will be

T̄(i,j), T̄(j,k), T̄(k,i)

= argminT(i,j),T(j,k),T(k,i)

∥∥∥(T(i,j))&S(i)T(i,j) − S(j)
∥∥∥
2

F

+
∥∥∥(T(j,k))&S(j)T(j,k) − S(k)

∥∥∥
2

F
+
∥∥∥(T(k,i))&S(k)T(k,i) − S(i)

∥∥∥
2

F

+ α ·
∥∥∥(T(j,k))&(T(i,j))&S(i)T(i,j)T(j,k) − T(k,i)S(i)(T(k,i))&

∥∥∥
2

F

s.t. T(i,j) ∈ {0, 1}|U (i)|×|U (j)|,T(j,k) ∈ {0, 1}|U (j)|×|U (k)|

T(k,i) ∈ {0, 1}|U (k)|×|U (i)|

T(i,j)1|U
(j)|×1 ! 1|U

(i)|×1, (T(i,j))&1|U
(i)|×1 ! 1|U

(j)|×1,

T(j,k)1|U
(k)|×1 ! 1|U

(j)|×1, (T(j,k))&1|U
(j)|×1 ! 1|U

(k)|×1,

T(k,i)1|U
(i)|×1 ! 1|U

(k)|×1, (T(k,i))&1|U
(k)|×1 ! 1|U

(i)|×1, (5.33)

where parameter α denotes the weight of the alignment transitivity penalty term.

5.4.2.3 Relaxation of the Optimization Problem
The objective function introduced in the previous subsection aims at obtaining the hard mappings
among users across different networks and entries in all these transitional matrices are binary, which
can lead to a fatal drawback: hard assignment can be neither possible nor realistic for networks with
star structures as proposed in [25] and the hard subgraph isomorphism [27] is NP-hard.

To overcome such a problem, the UMA framework proposes to relax the binary constraint of
entries in transitional matrices to allow them to be real values within range [0, 1]. Each entry in
the transitional matrix represents a probability, denoting the confidence of certain user-user mapping
across networks. Such a relaxation can make the one-to-one constraint no longer hold (which will be
addressed with transitive network matching in the next subsection) as multiple entries in rows/columns
of the transitional matrix can have non-zero values. To limit the existence of non-zero entries in the
transitional matrices, we replace the one-to-one constraint, e.g.,

T(k,i)1|U
(i)|×1 ! 1|U

(k)|×1, (T(k,i))&1|U
(k)|×1 ! 1|U

(i)|×1 (5.34)

with sparsity constraints
∥∥∥T(k,i)

∥∥∥
0
≤ t (5.35)

instead, where term ‖T‖0 denotes the L0 norm of matrix T, i.e., the number of non-zero entries in
T, and t is a small positive number to limit the non-zero entries in the matrix (i.e., the sparsity).
Furthermore, the framework UMA adds term ‖T‖0 to the minimization objective function, as it can be
hard to determine the value of t in the constraint.
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Based on the above relaxations, we can obtain the updated objective function to be

T̄(i,j), T̄(j,k), T̄(k,i)

= argminT(i,j),T(j,k),T(k,i)

∥∥∥(T(i,j))&S(i)T(i,j) − S(j)
∥∥∥
2

F

+
∥∥∥(T(j,k))&S(j)T(j,k) − S(k)

∥∥∥
2

F
+
∥∥∥(T(k,i))&S(k)T(k,i) − S(i)

∥∥∥
2

F

+ α ·
∥∥∥(T(j,k))&(T(i,j))&S(i)T(i,j)T(j,k) − T(k,i)S(i)(T(k,i))&

∥∥∥
2

F

+ β ·
∥∥∥T(i,j)

∥∥∥
0
+ γ ·

∥∥∥T(j,k)
∥∥∥
0
+ θ ·

∥∥∥T(k,i)
∥∥∥
0

s.t. 0|U
(i)|×|U (j)| ! T(i,j) ! 1|U

(i)|×|U (j)|,

0|U
(j)|×|U (k)| ! T(j,k) ! 1|U

(j)|×|U (k)|,

0|U
(k)|×|U (i)| ! T(k,i) ! 1|U

(k)|×|U (i)|, (5.36)

which involves three variables T(i,j), T(j,k), and T(k,i) simultaneously, obtaining the joint optimal
solution for which at the same time is very hard and time consuming. The UMA framework proposes
to address the above objective function by fixing two variables and updating the other variable
alternatively with the gradient descent method [3]. As proposed in [25], if during the alternating
updating steps, the entries of the transitional matrices become invalid (i.e., values less than 0 or greater
than 1), UMA applies the projection technique introduced in [25] to adjust negative entries to 0 and
change entries greater than 1 to 1 instead. With such a process, the updating equations of matrices
T(i,j),T(j,k),T(k,i) at step t + 1 are given as follows:

T(i,j)(t + 1)

= T(i,j)(t) − η(i,j)
∂L
(
T(i,j)(t),T(j,k)(t),T(k,i)(t),β, γ , θ

)

∂T(i,j)
, (5.37)

T(j,k)(t + 1)

= T(j,k)(t) − η(j,k)
∂L
(
T(i,j)(t + 1),T(j,k)(t),T(k,i)(t),β, γ , θ

)

∂T(j,k)
, (5.38)

T(k,i)(t + 1)

= T(k,i)(t) − η(k,i)
∂L
(
T(i,j)(t + 1),T(j,k)(t + 1),T(k,i)(t),β, γ , θ

)

∂T(k,i)
. (5.39)
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In the updating equations, η(i,j), η(j,k), and η(k,i) are the learning steps in updating T(i,j), T(j,k), and
T(k,i), respectively. The Lagrangian function of the objective function can be represented as

L(T(i,j),T(j,k),T(k,i),β, γ , θ) =
∥∥∥(T(i,j))&S(i)T(i,j) − S(j)

∥∥∥
2

F

+
∥∥∥(T(j,k))&S(j)T(j,k) − S(k)

∥∥∥
2

F
+
∥∥∥(T(k,i))&S(k)T(k,i) − S(i)

∥∥∥
2

F

+ α ·
∥∥∥(T(j,k))&(T(i,j))&S(i)T(i,j)T(j,k) − T(k,i)S(i)(T(k,i))&

∥∥∥
2

F

+ β ·
∥∥∥T(i,j)

∥∥∥
0
+ γ ·

∥∥∥T(j,k)
∥∥∥
0
+ θ ·

∥∥∥T(k,i)
∥∥∥
0
. (5.40)

Meanwhile, considering that ‖·‖0 is not differentiable because of its discrete values [43], we will
replace the ‖·‖0 with the ‖·‖1 instead (i.e., the sum of absolute values of all entries). Furthermore, as
all the negative entries will be projected to 0, the L1 norm of transitional matrix T can be represented
as
∥∥T(k,i)

∥∥
1 = 1&T(k,i)1 (i.e., the sum of all entries in the matrix). In addition, the Frobenius norm

‖X‖2F can be represented with trace Tr(XX&).
The partial derivatives of function L with regard to T(i,j), T(j,k), and T(k,i) will be:

(1)
∂L
(
T(i,j),T(j,k),T(k,i),β, γ , θ

)

∂T(i,j)

= 2 · S(i)T(i,j)(T(i,j))&(S(i))&T(i,j)

+ 2 · (S(i))&T(i,j)(T(i,j))&S(i)T(i,j)

+ 2α · S(i)T(i,j)T(j,k)(T(j,k))&(T(i,j))&(S(i))&T(i,j)T(j,k)(T(j,k))&

+ 2α · (S(i))&T(i,j)T(j,k)(T(j,k))&(T(i,j))&S(i)T(i,j)T(j,k)(T(j,k))&

− 2 · S(i)T(i,j)(S(j))& − 2 · (S(i))&T(i,j)S(j)

− 2α · (S(i))&T(i,j)T(j,k)T(k,i)S(i)(T(k,i))&(T(j,k))&

− 2α · S(i)T(i,j)T(j,k)T(k,i)(S(i))&(T(k,i))&(T(j,k))& − β · 11&. (5.41)

(2)
∂L
(
T(i,j),T(j,k),T(k,i),β, γ , θ

)

∂T(j,k)

= 2 · S(j)T(j,k)(T(j,k))&(S(j))&T(j,k)

+ 2 · (S(j))&T(j,k)(T(j,k))&S(j)T(j,k)

+ 2α · (T(i,j))&S(i)T(i,j)T(j,k)(T(j,k))&(T(i,j))&(S(i))&T(i,j)T(j,k)

+ 2α · (T(i,j))&(S(i))&T(i,j)T(j,k)(T(j,k))&(T(i,j))&S(i)T(i,j)T(j,k)

− 2 · S(j)T(j,k)(S(k))& − 2 · (S(j))&T(j,k)S(k)

− 2α · (T(i,j))&(S(i))&T(i,j)T(j,k)T(k,i)S(i)(T(k,i))&

− 2α · (T(i,j))&S(i)T(i,j)T(j,k)T(k,i)(S(i))&(T(k,i))& − γ · 11&. (5.42)
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(3)
∂L
(
T(i,j),T(j,k),T(k,i),β, γ , θ

)

∂T(k,i)

= 2 · S(k)T(k,i)(T(k,i))&(S(k))&T(k,i)

+ 2 · (S(k))&T(k,i)(T(k,i))&S(k)T(k,i)

+ 2αT(k,i)(S(i))&(T(k,i))&T(k,i)S(i)

+ 2αT(k,i)S(i)(T(k,i))&T(k,i)(S(i))&

− 2 · S(k)T(k,i)(S(i))& − 2 · (S(k))&T(k,i)S(i)

− 2α · (T(j,k))&(T(i,j))&(S(i))&T(i,j)T(j,k)T(k,i)S(i)

− 2α · (T(j,k))&(T(i,j))&S(i)T(i,j)T(j,k)T(k,i)(S(i))& − θ · 11&. (5.43)

Such an iterative updating process will stop when all transitional matrices converge. The achieved
variable matrices T(i,j), T(j,k), and T(k,i) will serve as the input for the transitive network matching
to be introduced in the following subsection to maintain both the one-to-one constraint and the
transitivity law constraint.

5.4.3 Transitive NetworkMatching

The constraint relaxation in the previous section actually violates the one-to-one property on anchor
links seriously, since each node in a network can be connected by multiple anchor links with different
inferred scores in matrices T(i,j), T(j,k), and T(k,i). To resolve such a problem, UMA adopts the
transitive network matching step as proposed in [47] to prune the introduced redundant anchor links.
The matching results (i.e., selected anchor links) need to meet both the one-to-one constraint and the
transitivity property.

Formally, given two networks G(i) and G(j), each potential anchor link, e.g., (u(i)l , u
(j)
m ), between

G(i) and G(j) is associated with a binary variable x
(i,j)
l,m ∈ {0, 1} to denote whether anchor link

(u
(i)
l , u

(j)
m ) is selected or not in the matching, where

x
(i,j)
l,m =

{
1 if

(
u
(i)
l , u

(j)
m

)
is selected,

0, otherwise.
(5.44)

For each user in network G(i), e.g., u(i)l ∈ U (i), at most one potential anchor link attached to
him/her will be selected in the final alignment result with another network, e.g., G(j) (or G(k)). So,
based on the introduced binary variables, the one-to-one constraint on anchor links between networks
G(i) and G(j) as well as between networks G(i) and G(k) can be represented as follows:

∑

u
(j)
m ∈U (j)

x
(i,j)
l,m ≤ 1,

∑

u
(k)
o ∈U (k)

x
(i,k)
l,o ≤ 1,∀u(i)l ∈ U (i). (5.45)
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Similarly, we can also define the binary variables x(j,k)m,o , x
(k,i)
o,l ∈ {0, 1} and the corresponding one-

to-one constraints for potential anchor links (u(j)m , u
(k)
o ) and (u

(k)
o , u

(i)
l ) between networks G(j), G(k)

and between networks G(k), G(i), respectively, to represent whether these links are selected or not.
According to the definition of “transitivity law,” if anchor links (u

(i)
l , u

(j)
m ) and (u

(j)
m , u

(k)
o ) are

selected ∀l ∈ {1, 2, . . . , |U (i)|},m ∈ {1, 2, . . . , |U (j)|}, o ∈ {1, 2, . . . ,U (k)|} in matching networks
G(i), G(j) and networks G(j), G(k), then anchor link (u

(k)
o , u

(i)
l ) should be selected as well in the

matching of networks G(k),G(i), i.e., x(k,i)o,l = 1. In other words, in three networks matching, the case

that only two variables in {x(i,j)l,m , x
(j,k)
m,o , x

(k,i)
o,l } are assigned with value 1 while the remaining one is 0

cannot hold in the final matching results, i.e.,

x
(i,j)
l,m + x

(j,k)
m,o + x

(k,i)
o,l 0= 2,∀l ∈ {1, 2, . . . , |U (i)|},

∀m ∈ {1, 2, . . . , |U (j)|},∀o ∈ {1, 2, . . . ,U (k)|, (5.46)

which is called the matching transitivity constraint. The matching transitivity constraint can be easily
generalized to the case of matchingn (n ≥ 3) networks.

Definition 5.4 (Matching Transitivity Constraint) Let G = {G(1),G(2), . . . ,G(n)} be a set of n
networks, the matching transitivity constraint (MTC) for matching these n networks in G can be
defined recursively as follows:

MTC(G) =
{∑

xG 0= |G| − 1
}

∪





⋃

G′⊂G,|G′|=|G|−1

MTC(G′)




 . (5.47)

In the above equation, the variable summation term
∑

xG = x
(1,2)
l,m + x

(2,3)
m,o + · · · + x

(n,1)
p,l ,∀l ∈

{1, 2, . . . , |U (1)|},∀m ∈ {1, 2, . . . , |U (2)|}, . . . ,∀p ∈ {1, 2, . . . , |U (n)|} represents the transitivity
constraint involving all these n networks.

The final selected anchor links should be those with high confidence scores in the inferred
transitional matrices but also can meet the one-to-one matching constraint and matching transitivity
constraint simultaneously. The transitive network matching can be formulated as the following
optimization problem:

max
x(i,j),x(j,k),x(k,i)

∑

l,m

x
(i,j)
l,m T(i,j)(l, m)+

∑

l,m

x
(i,j)
l,m T(i,j)(l, m)

+
∑

l,m

x
(i,j)
l,m T(i,j)(l, m),

s.t.
∑

u
(j)
m ∈U (j)

x
(i,j)
l,m ≤ 1,

∑

u
(k)
o ∈U (k)

x
(i,k)
l,o ≤ 1,∀u(i)l ∈ U (i),

∑

u
(i)
l ∈U (i)

x
(j,i)
m,l ≤ 1,

∑

u
(k)
o ∈U (k)

x
(j,k)
m,o ≤ 1,∀u(j)m ∈ U (j),
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∑

u
(i)
l ∈U (i)

x
(k,i)
o,l ≤ 1,

∑

u
(j)
m ∈U (j)

x
(k,j)
o,m ≤ 1,∀u(k)o ∈ U (k),

x
(i,j)
l,m + x

(j,k)
m,o + x

(k,i)
o,l 0= 2,∀l ∈ {1, 2, . . . , |U (i)|},

∀m ∈ {1, 2, . . . , |U (j)|},∀o ∈ {1, 2, . . . ,U (k)|,

x
(i,j)
l,m ∈ {0, 1},∀u(i)l ∈ U (i), u

(j)
m ∈ U (j).

x
(j,k)
m,o ∈ {0, 1},∀u(j)m ∈ U (j), u(k)o ∈ U (k).

x
(k,i)
o,l ∈ {0, 1},∀u(k)o ∈ U (k), u

(i)
l ∈ U (i). (5.48)

In the above objective function, the matching transitivity constraint x(i,j)l,m + x
(j,k)
m,o + x

(k,i)
o,l 0= 2 is

actually non-convex, which can be another challenge in addressing the function. In [47], framework
UMA proposes to (1) remove the matching transitivity constraint from the objective function, and (2)
apply the matching transitivity constraint to post-process the solution (obtained from the objective
function without the constraint).

The objective function (with the matching transitivity constraint removed) can be solved with open
source optimization toolkit, e.g., Scipy.Optimization6 and GLPK,7 and we will not describe how to
solve in detail due to the limited space. Among all the obtained solutions, we can check all the links
whose corresponding variables meeting x(i,j)l,m + x

(j,k)
m,o + x

(k,i)
o,l = 2 and assign the variable with value

0 with 1 instead. For example, for three given variables x(i,j)l,m , x(j,k)m,o and x
(k,i)
o,l , if x(i,j)l,m = x

(j,k)
m,o = 1

but x(k,i)o,l = 0, we will assign x
(k,i)
o,l with new value 1 and x

(k,i)
o,x = 0,∀x 0= l, x(k,i)x,l = 0,∀x 0= o to

preserve the matching transitivity constraint.

5.5 Heterogeneous Network Co-alignment

The real-world social networks usually contain heterogeneous information, including both very
complex network structures and different categories of attribute information, which can all provide
extra signals for inferring the potential anchor links across networks. Besides these common users,
social networks offering similar services can also share other common information entities, e.g.,
locations shared between Foursquare and Yelp, and products sold in both Amazon and Ebay. To
distinguish the anchor links between different types of information entities, those aligning the
common users are called the user anchor links, while those connecting locations (or products) are
called the location anchor links (or product anchor links).

In this section, we will study the problem to infer different categories of anchor links connecting
various anchor instances across social networks simultaneously, which is formally defined as the
network “Partial Co-alignmenT” (PCT) problem. PCT is a general research problem and can be applied
to different types of social networks, like Foursquare and Yelp, Amazon and eBay. In this section, we
will take online social networks as an example, and will mainly focus on the partial co-alignment of
location based social networks via shared users and locations with the various connection and attribute
information available in the networks.

6http://docs.scipy.org/doc/scipy/reference/optimize.html.
7http://www.gnu.org/software/glpk/.
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8 AM 4 PM 11 PM

user temporal activity user text usage

location visiting pattern

8 AM 12 PM 4 PM 8 PM 11 PM

location text 
descriptions

geo-location

8 AM 4 PM 11 PM

user temporal activity user text usage

location visiting pattern

8 AM 12 PM 4 PM 8 PM 11 PM

location text 
descriptions

geo-location

?

?

?
?

User Anchor Link

Location Anchor Link

Fig. 5.4 An example of the PCT problem

5.5.1 Network Co-alignment ProblemDescription

Example 5.7 As shown in Fig. 5.4, we have two location based online social networks. In these social
networks, users can check-in at the locations of their interest. Besides the connections among users
and those between users and locations, both the users and locations are associated with different types
of attribute information as well. For instance, for the users, we can obtain their profile information, the
temporal activities information, and the posts written by them. As introduced before, these different
types of attribute information can reveal the personal characteristics and is helpful for identifying the
shared common users. Similarly, for the locations, we can have the profile information of them, and
can also accumulate the timestamps and words from the posts attaching check-ins at these locations.

The timestamps and words of posts written at these places can reveal the characteristics of the
locations as well. For instance, as illustrated in Fig. 5.5, we have two totally different locations: the
Lincoln Park Zoo8 and Scarlet Bar.9 The Lincoln Park Zoo is the largest free zoo in Chicago and is
open during 10:00AM–5:00 PM. The Scarlet Bar is one of the most famous bars in Chicago, where
people can drink with friends, dance to enjoy their night life, and it is open during 8:00 PM–2:00AM.

We also have four online posts published by people at these two places in either Foursquare or
Twitter. From the content of these posts, we find that people usually publish words about animals,
pictures, and the scene at the Lincoln Park Zoo. However, people who visit the Scarlet Bar mainly
talk about the atmosphere in the bar, the drinks, the dance floor, and the music there. Meanwhile, we
can also accumulate the timestamps of posts published at these two places. The timestamps of posts

8http://www.lpzoo.org.
9http://www.scarletbarchicago.com.
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Fig. 5.5 An example of
information accumulation
for locations

Nice shot of Francois' 
langur baby Pierre! 
You can see another 
picture of him at 
http://www.lpzoo.org/
blog/lincoln-park-
zoo/photo-week-
august-2-2013

10:28 AM - 14 Aug 13

This place totally 
violates capacity 
laws! Shitty dance 

 and weak 
drinks... It's like a 
smaller, less classy 
minibar. Stay away!

10:57 PM - 7 Aug 13

If you like trashy 
people, sticky 

, ghetto 
music, and 
shoulder-to-
shoulder space... 
Then this is your 
bar.

1:32 AM - 5 Aug 13

Even tigers know 
how to beat the heat! 
pic.twitter.com/
DVr0WtwFNS

11:50 AM - 11 Aug 13

Scarlet BarLincoln Park 
Zoo

Text: 
picture, tiger, 

langur baby, ...

Timestamps: 
10:28 AM - 14 Aug 13 
11:50 AM - 11 Aug 13

Text: 

drinks, music, ...

Timestamps: 
10:57 PM - 7 Aug 13 
1:32 AM - 5 Aug 13

published at the Lincoln Park Zoo are mostly during the daytime, while those of posts published at the
Scarlet Bar are at night. Such accumulated information can serve as the profile information of these
locations, respectively.

Based on the above example and descriptions, we can define the PCT problem as follows. For any
two given social networks G(1) and G(2), with the link and attribute information in both G(1) and
G(2), the PCT problem aims at inferring the potential anchor links between users and locations across
G(1) and G(2), respectively. To differentiate the user anchor links and location anchor links, we use
sets A(1,2)

u and A(1,2)
l to represent these two types of anchor links between networks G(1) and G(2),

respectively. To address the problem, in this section, we will introduce UNICOAT model proposed in
[48].

5.5.2 Anchor Link Co-inference

As introduced in the problem definition, anchor set A(1,2)
u between networks G(1) and G(2) actually

maps users between networks G(1) and G(2). Considering that users in different social networks are
associated with both links and attribute information, the quality of the inferred anchor links A(1,2)

u

can be measured by the costs introduced by such mappings calculated with users’ link and attribute
information, i.e.,

cost(A(1,2)
u ) = cost in links (A(1,2)

u )+ α · cost in attributes(A(1,2)
u ), (5.49)

where α denotes the weight of the cost obtained from the attribute information (α is set as 1 in
the experiments for simplicity, i.e., the link and attribute information is treated to be of the same
importance). Considering that locations are also attached with link and attributes, similar cost function
can be defined for the inferred location anchor links in A(1,2)

l :

cost(A(1,2)
l ) = cost in links (A(1,2)

l )+ α · cost in attributes(A(1,2)
l ). (5.50)
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The optimal user and location anchor links (A(1,2)
u )∗ and (A(1,2)

l )∗ to be inferred in the PCT
problem that minimize the cost functions can be represented as

(A(1,2)
u )∗, (A(1,2)

l )∗ = arg min
A(1,2)

u ,A(1,2)
l

cost(A(1,2)
u )+ cost(A(1,2)

l ). (5.51)

To resolve the objective function, in the following parts of this section, we will introduce the
isolated user anchor link inference in Sect. 5.5.2.1, the isolated location anchor link inference in
Sect. 5.5.2.2, and the joint co-inference framework of user and location anchor links in Sect. 5.5.3.

5.5.2.1 User Anchor Links Inference
Social connections among users clearly illustrate the social community structures of users in online
social networks. Meanwhile, attribute information (e.g., profile information, text usage patterns,
temporal activities) can reveal users’ unique personal characteristics. Common users in different
networks tend to form similar community structures [46] and have very close personal characteristics
[45]. As a result, link and attribute information about the users both play very important roles in
inferring potential user anchor links across networks. In this part, we will introduce how to use such
information to improve the user anchor link inference results.

User Anchor Link Inference with Link Information
Similar to the matrix inference based network alignment approach introduced in Sect. 5.3.4, based on
the social links among users in bothG(1) andG(2) (i.e., E (1)

u,u and E (2)
u,u, respectively), we can construct

the binary social adjacency matrices [32] S(1) ∈ R|U (1)|×|U (1)| and S(2) ∈ R|U (2)|×|U (2)| for networks
G(1) andG(2), respectively. Meanwhile, via the inferred user anchor linksA(1,2)

u , users as well as their
social connections can be mapped between networksG(1) andG(2). We can represent the inferred user
anchor links A(1,2)

u with binary user transitional matrix P ∈ R|U (1)|×|U (2)|, where the (ith, lth) entry
P(i, l) = 1 iff link (u

(1)
i , u

(2)
l ) ∈ A(1,2)

u . Considering that the constraint on user anchor links is one-
to-one, each column and each row of P can contain at most one entry being assigned with value 1,
i.e.,

P1|U
(2)|×1 ! 1|U

(1)|×1, P&1|U
(1)|×1 ! 1|U

(2)|×1. (5.52)

The optimal user anchor links are those which can minimize the inconsistency of mapped social
links across networks and the cost introduced by the inferred user anchor link set A(1,2)

u with the link
information can be represented as

cost in link(A(1,2)
u ) = cost in link(P) =

∥∥∥P&S(1)P − S(2)
∥∥∥
2

F
, (5.53)

where ‖·‖F denotes the Frobenius norm of the corresponding matrix.

User Anchor Link Inference with Attribute Information
Besides social links, users in social networks can be associated with a set of attributes, which can
provide extra hints for identifying the correspondence relationships about users across networks. In
this part, we will introduce the method to infer the user anchor links with attribute information, which
includes username information, text usage patterns, and temporal activity information.

Username that can differentiate users from each other in online social networks is like their online
ID, which is an important factor in inferring potential anchor links. Let (u(1)i , u

(2)
l ) be a potential
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anchor link between G(1) and G(2), the usernames of u(1)i and u
(2)
l can be represented as two sets of

characters n(u(1)i ) and n(u
(2)
l ), respectively, based on which various metrics introduced in Sect. 5.2.1

can be applied to measure the similarity between u
(1)
i and u

(2)
l . For instance, by adopting the token

based Jaccard’s coefficient measure, we can compute the user similarity score between users u(1)i and
u
(2)
j as follows:

sim
(
n
(
u
(1)
i

)
, n
(
u
(2)
l

))
=

|n
(
u
(1)
i

)
∩ n
(
u
(2)
l

)
|

|n
(
u
(1)
i

)
∪ n
(
u
(2)
l

)
|
. (5.54)

Users usually have their unique active temporal patterns in online social networks [24]. For
example, some users like to socialize with their online friends in the early morning, but some may
prefer to do so in the evening after work. Users’ online active time can be extracted based on their
post publishing timestamps effectively. Let t(u(1)i ) and t(u(2)l ) be the normalized temporal activity
distribution vectors of users u(1)i and u

(2)
l , which are both of length 24. Entries of t(u(1)i ) and t(u(2)l )

contain the ratios of posts being published at the corresponding hour in a day. For example, t(u(1)i )(3)
denotes the ratio of all posts written by u

(1)
1 at 3AM. Based on vectors t(u(1)i ) and t(u(2)l ), we can

calculate the inner product of the temporal distribution vectors [24] as the similarity scores between
u
(1)
i and u

(2)
l in their temporal activity patterns, i.e.,

sim
(
t
(
u
(1)
i

)
, t
(
u
(2)
l

))
= t
(
u
(1)
i

)&
t
(
u
(2)
l

)
. (5.55)

Besides profile and online activity temporal distribution information, people normally have very
different text usage habits online [45], which can reveal personal unique characteristics and can be
applied in inferring the user anchor links across networks. We represent the text content used by
users u

(1)
i and u

(2)
l as bag-of-words vectors [24], w(u(1)i ) and w(u(2)l ), weighted by TF-IDF [23],

respectively. Commonly used text similarity measure:Cosine similarity [10] can be applied to measure
the similarities in text usage patterns between u

(1)
i and u

(2)
l , i.e.,

sim
(
w
(
u
(1)
i

)
,w
(
u
(2)
l

))
=

w
(
u
(1)
i

)&
· w
(
u
(2)
l

)

∥∥∥w
(
u
(1)
i

)∥∥∥ ·
∥∥∥w
(
u
(2)
l

)∥∥∥
. (5.56)

With these different attribute information (i.e., username, temporal activity, and text content),
we can calculate the similarities between users across networks G(1) and G(2). We represent such
similarity matrix as ! ∈ R|U (1)|×|U (2)|, where entry !(i, l) is the similarity between u

(1)
i and

u
(2)
l . !(i, l) can be represented as a combination of sim(n(u

(1)
i ), n(u

(2)
l )), sim(t(u(1)i ), t(u(2)l )), and

sim(w(u(1)i ),w(u(2)l )) and linear combination is used here due to its simplicity and wide usages. The
optimal weights of similarity scores calculated with different attribute information can be learned
from the data theoretically, but it will make the model too complicated. To focus on the co-alignment
problem itself, we can assume they are all of the same importance and propose to assign them with
the same weight for simplicity. In other words, we have

!(i, l) = 1
3

(
sim

(
n
(
u
(1)
i

)
, n
(
u
(2)
l

))
+ sim

(
t
(
u
(1)
i

)
, t
(
u
(2)
l

))

+ sim
(
w
(
u
(1)
i

)
,w
(
u
(2)
l

)) )
. (5.57)
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Similar users across social networks are more likely to be the same user and user anchor links in
A(1,2)

u that align similar users together should lead to lower cost. The cost function introduced by the
inferred user anchor links A(1,2)

u with attribute information can be represented as

cost in attribute(A(1,2)
u ) = cost in attribute(P) = −‖P ◦ !‖1 , (5.58)

where ‖·‖1 is the L1 norm [33] of the corresponding matrix, entry (P ◦ !)(i, l) can be represented as
P(i, l) · !(i, l) and P ◦ ! denotes the Hadamard product [9] of matrices P and !.

User Anchor Link Inference with Link and Attribute Information
Both link and attribute information can be very important for user anchor link inference. By taking
these two categories of information into considerations simultaneously, the cost introduced by the
inferred user anchor link set A(1,2)

u can be represented as

cost(A(1,2)
u ) = cost in link(A(1,2)

u )+ α · cost in attribute(A(1,2)
u )

=
∥∥∥P&S(1)P − S(2)

∥∥∥
2

F
− α · ‖P ◦ !‖1 . (5.59)

The optimal user transitional matrix P∗ which can lead to the minimum cost will be achieved by
addressing the following objective function:

P∗ = argmin
P

cost (A(1,2)
u )

= argmin
P

∥∥∥P&S(1)P − S(2)
∥∥∥
2

F
− α · ‖P ◦ !‖1

s.t. P ∈ {0, 1}|U (1)|×|U (2)|,

P1|U
(2)|×1 ! 1|U

(1)|×1,P&1|U
(1)|×1 ! 1|U

(2)|×1. (5.60)

5.5.2.2 Location Anchor Links Inference
Similar to users, locations in online social networks are also associated with both link and attribute
information (like the location links between users and locations, profile information and text descrip-
tions about the locations, as well as the (longitude, latitude) coordinate information). The (longitude,
latitude) pairs of the same location in different networks are usually not identical and various nearby
locations can have very close coordinates, which pose great challenges in differentiating the locations
from each other.

Location Anchor Link Inference with Link Information
LetL(1) andL(2) be the sets of locations in networksG(1) andG(2), respectively. Based on the location
links between users and locations in networksG(1) andG(2) (i.e., E (1)

u,l and E
(2)
u,l ), we can construct the

binary location adjacency matrices L(1) ∈ R|U (1)|×|L(1)| and L(2) ∈ R|U (2)|×|L(2)| for networks G(1)

and G(2), respectively. Entries in L(1) and L(1) (e.g., L(1)(i, j) and L(2)(l, m)
)
are filled with value 1

iff user u(1)i has visited location l
(1)
j in G(1) and user u(2)l has visited location l

(2)
m in G(2).

Besides the user transitional matrix P which maps users between G(1) and G(2), we can also
construct the binary location transitional matrix Q ∈ {0, 1}|L(1)|×|L(2)| based on the inferred location
anchor link set A(1,2)

l , which maps locations between G(1) and G(2). The cost introduced by the

jwzhanggy@gmail.com



192 5 Unsupervised Network Alignment

inferred location anchor link set A(1,2)
l can be defined as the number of mis-mapped location links

across networks, i.e.,

cost in link(A(1,2)
l ) =

∥∥∥P&L(1)Q − L(2)
∥∥∥
2

F
. (5.61)

Location Anchor Link Inference with Attribute Information
In location-based social networks, each location has its own profile page, which shows the name and
all the review comments about the location. Similar to the similarity scores for user anchor links, for
any two locations li ∈ L(1) and lm ∈ L(2), based on the names of locations li and lm, we can calculate
the similarity scores between li and lm to be

sim(n(li), n(lm)) =
|n(li) ∩ n(lm)|
|n(li) ∪ n(lm)|

. (5.62)

Users’ review comments can summarize the unique features about locations, which are also very
important hints for inferring potential location anchor links. Similarly, we represent users’ review
comments posted at locations li and lm as bag-of-word vectors [19] weighted TF-IDF [35], w(li) and
w(lm). And the similarity between li and lm based on the review comments can be represented as

sim(w(li),w(lm)) = w(li)& · w(li). (5.63)

Closer locations are more likely to the same site than the ones which are far away. Based on the
(latitude, longitude) information, the similarity score between locations li and lm can be defined as
follows:

sim(lat-long(li), lat-long(lm))

= 1.0 −
√
(lat(li) − lat(lm))2 + (long(li) − long(lm))2√

(180 − (−180))2 + (90 − (−90))2
. (5.64)

Furthermore, we can also construct the similarity matrix between locations in G(1) and G(2) as
" ∈ R|L(1)|×|L(2)|, where we have entry

"(j,m) = 1
3

(
sim(n(li), n(lm))+ sim(w(li),w(lm))

+ sim(lat-long(li), lat-long(lm))
)
. (5.65)

The optimal location transitional matrix Q which can minimize the cost in attribute information can
be represented as

cost in attribute(A(1,2)
l ) = −‖Q ◦ "‖1 . (5.66)

Location Anchor Link Inference with Link and Attribute Information
By considering the location links and attributes attached to locations simultaneously, the cost function
of inferred location anchor links A(1,2)

l can be represented as

cost(A(1,2)
l ) = cost in link(A(1,2)

l )+ α · cost in attribute(A(1,2)
l )

=
∥∥∥P&L(1)Q − L(2)

∥∥∥
2

F
− α · ‖Q ◦ "‖1 . (5.67)
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The optimal user and location transitional matrices P∗ and Q∗ that can minimize the mapping cost
will be

P∗,Q∗ = argmin
P,Q

cost(A(1,2)
l )

= argmin
P,Q

∥∥∥P&L(1)Q − L(2)
∥∥∥
2

F
− α · ‖Q ◦ "‖1 ,

s.t. Q ∈ {0, 1}|L(1)|×|L(2)|,P ∈ {0, 1}|U (1)|×|U (2)|,

P1|U
(2)|×1 ! 1|U

(1)|×1,P&1|U
(1)|×1 ! 1|U

(2)|×1.

Q1|L
(2)|×1 ! 1|L

(1)|×1,Q&1|L
(1)|×1 ! 1|L

(2)|×1, (5.68)

where location anchor links also have one-to-one constraint, and the last two equations are added to
maintain such a constraint.

5.5.2.3 Co-inference of Anchor Links
User transitional matrix P is involved in the objective functions of inferring both user anchor links
and location anchor links, and these two different anchor link inference tasks are strongly correlated
(due to P) and can be inferred simultaneously. By integrating the objective equations of anchor link
inference for both users and locations, the optimal transitional matrices P∗ and Q∗ can be obtained
simultaneously by solving the following objective function:

P∗,Q∗ = argmin
P,Q

cost(A(1,2)
u )+ cost(A(1,2)

l )

= argmin
P,Q

∥∥∥P&S(1)P − S(2)
∥∥∥
2

F
+
∥∥∥P&L(1)Q − L(2)

∥∥∥
2

F

− α · ‖P ◦ !‖1 − α · ‖Q ◦ "‖1 ,

s.t. P ∈ {0, 1}|U (1)|×|U (2)|,Q ∈ {0, 1}|L(1)|×|L(2)|,

P1|U
(2)|×1 ! 1|U

(1)|×1,P&1|U
(1)|×1 ! 1|U

(2)|×1,

Q1|L
(2)|×1 ! 1|L

(1)|×1,Q&1|L
(1)|×1 ! 1|L

(2)|×1. (5.69)

The objective function is a constrained nonlinear integer programming problem, which is hard to
address mathematically. Many relaxation algorithms have been proposed so far [2]. To solve the
problem, as proposed in [48], the binary constraint of matrices P and Q can be relaxed to the real
numbers in range [0, 1] and entries in P and Q will denote the existence probabilities/confidence
scores of the corresponding anchor links. Redundant anchor links introduced by such a relaxation will
be pruned with the co-matching algorithm to be introduced in the next section.

Meanwhile, the Hadamard product terms P ◦ ! and Q ◦ " can be very hard to deal with when
solving the optimization problem. Considering that matrices P, !, Q, and " are all positive matrices,
the L1 norm of Hadamard product terms can be replaced according to the following Lemmas.

Lemma 5.1 For any given matrix A, the square of its Frobenius norm equals to the trace of AA&,
i.e., ‖A‖2F = tr(AA&).

The proof of the above lemma will be left as an exercise for the readers.
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Lemma 5.2 For two given positive matrices A and B of the same dimensions, the L1 norm of the
Hadamard product about A and B equals to the trace of A&B or AB&, i.e., ‖A ◦ B‖1 = tr(A&B) =
tr(AB&).

Proof According to the definitions of matrix trace, terms tr(A&B) and tr(AB&) equal to the
Frobenius product [33] of matrices A and B, i.e.,

tr(A&B) = tr(AB&) =
∑

i,j

A(i, j)B(i, j). (5.70)

Meanwhile,

‖A ◦ B‖1 =
∑

i,j

|(A ◦ B)(i, j)| =
∑

i,j

|A(i, j) · B(i, j)| . (5.71)

Considering that both A and B are positive matrices, so the following equation can always hold:

‖A ◦ B‖1 =
∑

i,j

A(i, j) · B(i, j) = tr(A&B) = tr(AB&). (5.72)

To solve the objective function, the alternating projected gradient descent (APGD) method
introduced in [25] can be applied here and the one-to-one constraint will be relaxed. The constraints
P1 ! 1, P&1 ! 1 are replaced with ‖P‖1 ≤ t instead, where t is a small constant. Similarly, the one-
to-one constraint on Q is also relaxed and replaced with ‖Q‖1 ≤ t . Furthermore, by incorporating
terms ‖P‖1 and ‖Q‖1 into the minimization objective function, based on the relaxed constraints as
well as Lemmas 5.1–5.2, the new objective function can be represented to be

argmin
P,Q

f (P,Q) = tr
(
(P&S(1)P − S(2))(P&S(1)P − S(2))&

)

+ tr
(
(P&L(1)Q − L(2))(P&L(1)Q − L(2))&

)

− α · tr(P!&) − α · tr(Q"&)+ γ · ‖P‖1 + µ · ‖Q‖1
s.t. 0|U

(1)|×|U (2)| ! P ! 1|U
(1)|×|U (2)|,

0|L
(1)|×|L(2)| ! Q ! 1|L

(1)|×|L(2)|, (5.73)

where γ and µ denote the weights on ‖P‖1 and ‖Q‖1, respectively.
As we can see, the objective function is with respect to P and Q and we cannot give a closed-

form solution for the objective function. In [48], the optimal P and Q are learned with an alternative
updating procedure based on the gradient descent algorithm: (1) fix Q and minimize the objective
function w.r.t. P; and (2) fix P and minimize the objective function w.r.t. Q. If during these two
updating procedures, entries in P or Q become invalid, we use a projection to guarantee the [0, 1]
constraint: (1) if P(i, j) > 1 or Q(i, j) > 1, we project it to 1; and (2) if P(i, j) < 0 or Q(i, j) < 0,
we project it to 0 [25]. The alternative updating equations of these two matrices are available as
follows:
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Pτ = Pτ−1 − η1 ·
∂Γ (Pτ−1,Qτ−1, γ , µ)

∂P

= Pτ−1 − 2η1 ·
(
S(1)PP&(S(1))&P+ (S(1))&PP&S(1)P

+ L(1)QQ&(L(1))&P − S(1)P(S(2))& − (S(1))&PS(2)

− L(1)Q(L(2))& − 1
2
α! + 1

2
γ 11&

)
, (5.74)

Qτ = Qτ−1 − η2 ·
∂Γ (Pτ ,Qτ−1, γ , µ)

∂Q

= Qτ−1 − 2η2 ·
(
(L(1))&PP&L(1)Q − (L(1))&PL(2)

− 1
2
α" + 1

2
µ11&

)
, (5.75)

where η1 and η2 are the learning rate in updating P and Q, respectively. Such an updating process
will continue until both P and Q converge.

5.5.3 Network Co-matching

To solve the objective function, the one-to-one constraint on both user anchor links and location
anchor links are relaxed, which can take values in range [0, 1]. As a result, users and locations in each
network can be connected by multiple user/location anchor links of various confidence scores across
networks simultaneously and the one-to-one constraint can no longer hold any more. To maintain such
a constraint on both user and location anchor links, the redundant ones introduced due to the relaxation
with network flow will be pruned based on a network co-matching algorithm in this subsection.

Based on user sets U (1) and U (2), location sets L(1) and L(2), as well as the existence confidence
scores of potential user and location anchor links between networks G(1) and G(1) (i.e., entries of P
and Q), we can construct the user and location preference bipartite graphs as shown in the left plots
of Fig. 5.6.

User Preference Bipartite Graph
The user preference bipartite graph can be represented as BGU = (U (1) ∪ U (2),U (1) × U (2),WU ),
where U (1) ∪ U (2) denotes the user nodes in G(1) and G(2), U (1) × U (2) contains all the potential user
anchor links between G(1) and G(2), andWU will map links in U (1) × U (2) to their confidence scores
(i.e., entries in P) inferred in the previous section.

Location Preference Bipartite Graph
Similarly, we can also represent the location preference bipartite graph to be BGL = (L(1) ∪
L(2),L(1) × L(2),WL), where the weight mapping of potential location anchor links (i.e., WL) can
be obtained from location transitional matrix Q in a similar way as introduced before.

Co-matching Network Flow Graph
To prune the non-existing anchor links, the traditional network flow algorithm can be employed to
match users and locations across networks G(1) and G(2) simultaneously, which are grouped together
in an integrated network flow model, named “co-matching network flow.” As shown in the right plot
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Fig. 5.6 User and location preference bipartite graphs and co-matching network flow graph

of Fig. 5.6, based on the user preference bipartite graphs and location preference bipartite graphs, the
co-matching network flow graph can be constructed by adding (1) a source node S, (2) a sink node T ,
(3) links connecting node S and links in U (1)∪L(1) (i.e., {S}× (U (1)∪L(1))), and (4) links connecting
nodes in U (2) ∪ L(2) and node T (i.e., (U (2) ∪ L(2)) × {T }).

Bound Constraint
In the network flow model, each link in the co-matching network flow graph is associated with an
upper bound and lower bound to control the amount of flow going through it. For example, the upper
and lower bounds of potential user anchor link (u, v) ∈ U (1) × U (2) in the co-matching network flow
graph can be represented as

B(u, v) ≤ F(u, v) ≤ B(u, v), (5.76)

where F(u, v) denotes the flow amount going through link (u, v), B(u, v) and B(u, v) represent the
lower bound and upper bound associated with link (u, v), respectively.

Considering that the constraint on both user and location anchor links is one-to-one and networks
studied in this section are partially aligned, users in online social networks include both anchor and
non-anchor users; so is the case for locations. In other words, each user and location in online social
networks can be connected by at most one anchor links across networks, which can be achieved by
adding the following upper and lower bound constraint on links {S}×(U (1)∪L(1)) and (U (2)∪L(2))×
{T }:

0 ≤ F(u, v) ≤ 1,∀(u, v) ∈ {S} × (U (1) ∪ L(1)) ∪ (U (2) ∪ L(2)) × {T }. (5.77)

Among all the potential user anchor links in U (1) × U (2) and location anchor links in L(1) × L(2),
only part of these links will be selected finally due to the one-to-one constraint. To represent whether a
link (u, v) is selected or not, the flow amount going through links U (1) ×U (2) ∪L(1) ×L(2) will be set
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as integers with upper and lower bounds to be 0 a 1 (1 denotes the link is selected, and 0 otherwise),
respectively, i.e.,

F(u, v) ∈ {0, 1},∀(u, v) ∈ U (1) × U (2) ∪ L(1) × L(2). (5.78)

Mass Balance Constraint
In addition, in network flow model, for each node in the graph (except the source and sink node), the
amount of flow going through it should meet the mass balance constraint, i.e., for each node in the
network, the amount of network flow going into it should equal to that going out from it:

∑

w∈NF ,(w,u)∈LF

F (w, u) =
∑

v∈NF ,(u,v)∈LF

F (u, v), (5.79)

where NF = {S} ∪ U (1) ∪ U (2) ∪ L(1) ∪ L(2) ∪ {T } denotes all the nodes in the co-matching network
flow graph and LF = {S}× (U (1) ∪L(1))∪U (1) ×U (2) ∪L(1) ×L(2) ∪ (U (2) ∪L(2))× {T } represents
all the links in graph.

Maximum Confidence Objective Function
All the potential links connecting users and locations across networks are associated with certain
costs in network flow model, where links with lower costs are more likely to be selected. The model
can be modified a little to select the links introducing the maximum confidence scores instead from
U (1)×U (2) andL(1)×L(2), respectively, which can be obtained with the following objective functions:

max
∑

(u,v)∈(U (1)×U (2))

F (u, v) ·WU (u, v), (5.80)

max
∑

(m,n)∈(L(1)×L(2))

F (m, n) ·WL(m, n). (5.81)

The final objective equation of simultaneous co-matching of users and locations across networks
can be represented to be

max
∑

(u,v)∈(U (1)×U (2))

F (u, v) ·WU (u, v)+
∑

(m,n)∈(L(1)×L(2))

F (m, n) ·WL(m, n),

s.t. 0 ≤ F(u, v) ≤ 1,∀(u, v) ∈ {S} × (U (1) ∪ L(1)) ∪ (U (2) ∪ L(2)) × {T },

F (u, v) ∈ {0, 1},∀(u, v) ∈ U (1) × U (2) ∪ L(1) × L(2),
∑

w∈NF ,(w,u)∈LF

F (w, u) =
∑

v∈NF ,(u,v)∈LF

F (u, v). (5.82)

The above network flow objective function can be solved with open-source toolkits (e.g.,
Scipy.Optimization10 and GLPK11). In the obtained solution, the flow amount variable of potential

10http://docs.scipy.org/doc/scipy/reference/optimize.html.
11http://www.gnu.org/software/glpk/.
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user and location anchor links achieving value 1 are the selected ones which will be assigned with
label +1, while the remaining (i.e., those achieving value 0) are not selected which are assigned with
label −1. The matching results obtained from the above objective function will be outputted as the
final network co-alignment result.

5.6 Summary

In this chapter, we introduced the network alignment problem based on the unsupervised learning
setting, where no training data (i.e., labeled anchor links) is available or necessarily needed.
Technically speaking, the unsupervised network alignment problem is very challenging to address,
which can be identically modeled as the graph isomorphism problem. To resolve the problem, we
talked about several heuristics based network alignment approaches and several matrix inference
approaches at first.

Based on the users’ names and profile information, we provided a detailed description about how
to utilize such information to compute the similarity scores among users. Based on the assumption
that similar users are more likely to be the same user, several different similarity metrics have
been introduced in this chapter. With the user names, we can compute the similarity scores among
users based on the characters, tokens, and phonetic representations. Meanwhile, with the profile
information, we can compute the similarity scores of users in their hometown locations, birthday,
and textual information.

The anchor links actually define a mapping of users across networks, and we also introduce several
network alignment approaches via inferring the mapping matrix about anchor links. Via the anchor
links, both the user nodes and the social connections can be mapped from one network to the other
network. The good mappings should be able to minimize the projection inconsistency about the
network structures. Furthermore, there also exists a hard binary and one-to-one cardinality constraint
on the mapping matrix, which renders the inference process to be extremely challenging.

We introduced an approach to apply the matrix inference based network alignment method to infer
the anchor links across multiple (more than two) networks, where the alignment results should also
preserve the transitivity law. To resolve the objective function, we talked about a two-phase solution:
matrix inference via constraint relaxation, and post-processing of the alignment results via transitive
matching.

For the alignment of networks via multiple types of shared information entities simultaneously, we
also introduced a network co-alignment approach, which learns the mapping matrices of multiple
types of anchor links simultaneously. By extending the anchor link mapping matrix inference
approach to the scenario with both network structure and diverse attribute information, the introduced
method is able to infer the user anchor links and location anchor links across heterogeneous networks
at the same time.

5.7 Bibliography Notes

Graph isomorphism problem is an extremely challenging research problem, which is one of few
standard problems in computational complexity theory belonging to NP. But by this context so far,
it is still not known whether it belongs to P or NP-complete. It is one of only two problems whose
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complexity remains unresolved as listed in [15], the other being integer factorization. There have been
several research works proposing efficient algorithms to address the graph isomorphism problem in
the past century [12, 30]. In 2015, László Babai claimed to have proven that the graph isomorphism
problem is solvable in quasi-polynomial time [4], but the proof has not been vetted yet.

Entity resolution is a common problem in many areas, e.g., database, statistics, and artificial
intelligence. Based on the entity names, [11] provides an introduction about several string distance
metrics for name-matching tasks, including the edit distance like metrics, token based distance
metrics, and hybrid distance metrics. Meanwhile, for a comprehensive survey about the text similarity
approaches, the readers may refer to [18], which covers the similarity metrics between words,
sentences, paragraphs, and documents.

The multiple network simultaneously alignment method is based on [47], where the transitivity
law property on anchor links in alignment was initially pointed out in that work. Meanwhile, the
heterogeneous network co-alignment approach via multiple types of shared information entities was
introduced in [48]. The network matching procedure in [47, 48] are both formulated as the maximum
network flow problem [20]. Over the years, many improved solutions to the problem have been
discovered, e.g., the shortest augmenting path algorithm [14], the blocking flow algorithm [13], the
push-relabel algorithm [17], and the binary blocking flow algorithm [16].

5.8 Exercises

1. (Easy) Please compute the edit distance, Jaro distance, and Jaro-Winkler distance of a pair of
input strings “DIXON” and “DICKSONX.”

2. (Easy) Please compute the common token, token based Jaccard’s coefficient, and token based
Cosine Similarity for the user names “Mike Jordan” and “Michael Jordan.”

3. (Medium) Please identify the alignment results of the input network shown in Fig. 5.7 with the
relative degree difference measure.

Fig. 5.7 A pair of aligned
input networks
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Fig. 5.8 Multiple aligned
input networks
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4. (Medium) Please identify the alignment results of the input network shown in Fig. 5.7 with the
IsoRank algorithm.

5. (Medium) Please identify the alignment results of the input network shown in Fig. 5.8 with the
IsoRankN algorithm.

6. (Medium) Please try to prove the Lemma 5.1.
7. (Hard) Please try to implement an algorithm with your preferred programming language to

compute the edit distance of two input strings (Hint: You may consider to use the dynamic
programming algorithm).

8. (Hard) Please try to implement the matrix inference based network alignment algorithm intro-
duced in Sect. 5.3.4, and test it based on a small-sized synthetic aligned homogeneous network
dataset.

9. (Hard) Please implement the UMA algorithm in your preferred programming language, and test it
based on a small-sized synthetic aligned network dataset.

10. (Hard) Please implement the network co-alignment algorithm introduced in Sect. 5.5.2.2 your
preferred programming language, and test it with a small-sized synthetic co-aligned network
dataset.
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