
4Supervised Network Alignment

4.1 Overview

Online social networks, such as Facebook,1 Twitter,2 Foursquare,3 and LinkedIn,4 have become more
and more popular in recent years. Each social network can be represented as a heterogeneous network
containing abundant information about: who, where, when, and what, i.e., who the users are, where
they have been to, what they have done, and when they did these activities. Different online social
networks can provide unique social network services for the users. For instance, Facebook is a general
public social sharing site, Twitter is a micro blogging social site mainly about short posts, Foursquare
is a location based social network, and LinkedIn is a business oriented professional social network site.

Nowadays, to enjoy the social network services from multiple sites at the same time, people are
usually getting involved in more and more different kinds of social networks simultaneously. For
example, people usually share reviews or tips about different locations or places with their friends
using Foursquare. At the same time, they may also share the latest news using Twitter, and share
photos using Facebook. Thus, each user often has multiple separate accounts in different social
networks. However, these accounts of the same user are mostly isolated without any connections
or correspondence relationships to each other.

Discovering the correspondence between accounts of the same user is a crucial prerequisite for
many interesting inter-network applications, such as friend recommendation [25, 26, 31, 35, 36],
social community detection [27, 31, 32], and social information diffusion [10, 31, 39, 40, 42] using
information from multiple networks simultaneously. For example, in the Foursquare network,
the social connections and activities of new users can be very sparse. The friend and location
recommendations for users are very hard merely using the Foursquare network. However, if the user’s
Twitter account is also known, his/her social connections and location check-in data in Twitter network
will be used to improve the recommendation services in the Foursquare network.

In this book, we focus on studying the common users shared by different social networks, and the
correspondence relationship between the shared users across social networks are called the anchor
links [12, 31, 37]. Formally, inferring the common users shared by different social network sites is

1https://www.facebook.com.
2https://twitter.com.
3https://foursquare.com.
4https://www.linkedin.com.

© Springer Nature Switzerland AG 2019
J. Zhang, P. S. Yu, Broad Learning Through Fusions,
https://doi.org/10.1007/978-3-030-12528-8_4

129

jwzhanggy@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12528-8_4&domain=pdf
https://www.facebook.com
https://twitter.com
https://foursquare.com
https://www.linkedin.com
https://doi.org/10.1007/978-3-030-12528-8_4

130 4 Supervised Network Alignment

?
?

?

?

?

Locations

User Accounts

Locations

friend

friend

friend

friend

Tips

check-in

check-in

write

follow

follow
follow

locate

locate

Tweets
write

anchor links

8 AM 12 PM 4 PM 8 PM 11 PM

User Accounts

Temporal Activities

8 AM 12 PM 4 PM 8 PM 11 PM

Temporal Activities

Foursquare Network Twitter Network

?

?

Fig. 4.1 An example of supervised network alignment problem

called the network alignment problem [12,31,33,34,38,41], which can also be called the anchor link
prediction problem [12, 31]. In this book, these two terms are used interchangeably when referring to
the problem. In the real-world, the anchor links connecting the common information entities across
different social networks are extremely hard to identify. Manual labeling of the anchor links between
networks can be a tedious and complicated task. Depending on whether the pre-labeled training
data is available or not, in this chapter as well as the following Chaps. 5–6, the network alignment
problem will be introduced based on different learning settings, including supervised learning setting,
unsupervised learning setting, and semi-supervised learning setting.

In this chapter, as illustrated in Fig. 4.1, the network alignment problem is studied based on the
supervised learning setting specifically, assuming that we can obtain a set of labeled anchor links as
the training set in advance. We will start this section with the supervised network alignment problem
definition. Subject to the one-to-one constraint [12,33,34], two different network alignment models for
full network alignment [12,31,33,34] and partial network alignment [31,38] models will be introduced
afterwards, respectively, which both use the classification method as the base model. To incorporate
the one-to-one cardinality constraint into the problem formulation, the anchor link prediction with
cardinality constraint framework will be introduced, which is a generalized link prediction model and
can be used in inferring other types of links subject to any cardinality constraints as well.

4.2 Supervised Network Alignment ProblemDefinition

Example 4.1 In Fig. 4.3, we show an example of two heterogeneous social networks (Twitter and
Foursquare) with six users. Each user has two accounts in these two networks separately. In each
network, users are connected with each other through the social links. Moreover, each user is also
connected with a set of locations, timestamps, and text contents created by their online social activities.
Note that the top two users in Fig. 4.3 also have another type of link, which connects the same

jwzhanggy@gmail.com

4.3 Supervised Full Network Alignment 131

user’s accounts between two networks. We call these links the anchor links [12, 37] as introduced
in Sect. 3.4.3. Each anchor link indicates a pair of accounts that belong to the same user. The task
of network alignment problem is to discover which account pairs, as shown with question marks in
Fig. 4.3, should be connected by the anchor links in the real world.

Both the Foursquare and Twitter networks shown in the example can be represented as heteroge-
neous social networks defined in the previous chapter. For instance, we can represent the Foursquare
network as G(1) = (V(1), E (1)), where V(1) and E (1) denote the node and link sets, respectively.
As introduced before, the Foursquare involves different types of information entities, and the node
set V(1) = U (1) ∪ P(1) ∪ L(1) ∪ W(1) ∪ T (1) contains the user, post, location check-in, word, and
timestamp nodes, respectively. The node subset U (1) = {u(1)1 , u

(1)
2 , . . . , u

(1)
n(1)

} denotes the set of users
in Foursquare. The posts written by the users are represented as the set P(1), which may involve
a set of location check-ins L(1), text words W(1), and timestamps T (1). Meanwhile, the link set
E (1) = E (1)

u,u ∪ E (1)
u,p ∪ E (1)

p,l ∪ E (1)
p,w ∪ E (1)

p,t involves the links among users, between users and posts,
as well as those between posts and locations check-ins, words, and timestamps. Similarly, the Twitter
network can be represented as a heterogeneous social network G(2) with a similar structure, the user
node set involved in which can be denoted as U (2) = {u(1)1 , u

(1)
2 , . . . , u

(1)
n(2)

}.
In the network alignment problem settings, the anchor links are assumed to be subject to the one-to-

one constraint, where a user from one network can be connected by at most one anchor link with users
from another network. In the supervised network alignment setting, a set of existing and non-existing
anchor links can be pre-identified and labeled as the (positive and negative) training set Atrain ⊂
U (1) × U (2). And the supervised network alignment problem aims at inferring the existence of the
remaining potential anchor links, i.e., Atest = U (1) × U (2) \ Atrain, among users between networks
G(1) and G(2).

In the supervised network alignment problem, a set of features will be extracted for the anchor
links across networks with the heterogeneous information available in the networks. Meanwhile, the
existing and non-existing anchor links will be labeled as positive and negative instances, respectively.
Based on the training set Atrain, the feature vectors and labels of links in the set can be represented
as tuples {(xl , yl)}l∈Atrain

, where xl represents the feature vector extracted for anchor link l and yl ∈
{−1,+1} denotes its label. Based on the training set, the supervised network alignment problem aims
at building a mapping f : Atest → {−1,+1} to determine the labels of the anchor links in the
testing set.

4.3 Supervised Full Network Alignment

Depending on how many users in the networks are the shared anchor users, the supervised network
alignment can be categorized into the supervised full network alignment [12] and supervised
(mutually) partial network alignment [38] problems. In the full network alignment problem, the
networks to be studied are fully aligned and each user will be connected by an anchor link in the
results; while in the partial network alignment problem, the networks are partially aligned and many
users should stay isolated without any matching partners across networks. In this section, we will
introduce the model proposed to solve the supervised full network alignment, where the users in
networks G(1) and G(2) are all anchor users and will get connected by the anchor links.

As introduced before, in this section, we will introduce a two-phase approach, namely MNA [12],
to address the full network alignment problem. The first phase of MNA tackles the feature extraction
problem, while the second phase takes care of the one-to-one constrained anchor link prediction.

jwzhanggy@gmail.com

132 4 Supervised Network Alignment

The phase of feature extraction mainly explores two kinds of ideas on multiple heterogeneous social
networks. First, we exploit social links in each network and the labeled anchor links across the two
networks to extract social features for anchor link prediction. Second, we exploit the heterogeneous
information in both networks to extract three sets of heterogeneous features for anchor link prediction,
which correspond to aggregated patterns of users on spatial distribution, temporal activity distribution,
and textual usage behavior separately. All these extracted features and the pairs of accounts with
known labels will be used to learn a binary SVM for anchor link prediction. Since the label predictions
of SVM don’t satisfy the one-to-one constraint, the real-value scores of the SVM are used as the input
for the second phase, and derive the anchor link predictions collectively according to the one-to-one
constraint.

4.3.1 Feature Extraction for Anchor Links

There exist different types of information in the networks, including the social connections, location
check-ins, text words, and timestamps, which can all indicate the correspondence relationships among
users across networks.

Example 4.2 We show a case study to demonstrate these heterogeneous information from two
networks are useful for identifying the anchor links. In Fig. 4.2, we show a case of five real-world
users who have both Twitter and Foursquare accounts. These five users are socially connected in both
networks, as shown in Fig. 4.2a. By considering this social information, we can significantly shrink
the search space for anchor links if one or some of these users’ accounts in both networks have already
been labeled by anchor links. In Fig. 4.2b, we show the spatial distributions of different users in both
networks. We can see that the spatial distribution of the same user is pretty similar to each other.
Michelle is mainly located in the central states of the USA, when sending tweets and foursquare tips.
The spatial distributions of her foursquare account and twitter account are pretty similar. In Fig. 4.2c,
we show the temporal distributions of the users. We can see that Tristan’s temporal activities across
both Twitter account and Foursquare account are very consistent, and his distribution is very different
from Lisa’s temporal activity pattern. In Fig. 4.2d, we show some frequently used words by the users,
where the choices of words of the same user can be pretty consistent. For example, Andrew seems to
prefer to use “awsm” instead of “awesome” when writing tweets and tips.

Most existing features for link prediction, such as numbers of common neighbors and other social
closeness measures introduced in the previous chapter, mainly focus on one single network setting,
and the target links are assumed to be subject to the many-to-many cardinality constraint. These
features cannot be directly used for the anchor link prediction task across multiple networks. Based
on the above example, in the following part, we will introduce the features that can be extracted for
the anchor links between networks with such heterogeneous social information.

4.3.1.1 Social Connection Based Features
Users often have similar social links in different social networks, such as Twitter and Facebook,
because such social links usually indicate the user’s social ties in real life. In other words, the social
similarity between two user accounts from different social networks can be exploited to help locate
the same user.

Our goal is to extract discriminative social features for a pair of user accounts in two disjoint
social networks. Intuitively, the social neighbors of each user account can only involve user accounts
from the same social network. For example, the neighbors for a Facebook account can only involve

jwzhanggy@gmail.com

4.3 Supervised Full Network Alignment 133

Tristan
Walker

Liza
Sperling

Andrew
Nystrom

Nathan
Levinson

Michelle
Jacobson

Foursquare Twitter

follow

follow

follow

anchor links

(a)

Michelle
Jacobson

Nathan
Levinson

Andrew
Nystrom

Liza
Sperling

Tristan
Walker

Foursquare Twitter

(b)

Michelle
Jacobson

Nathan
Levinson

Andrew
Nystrom

Liza
Sperling

Tristan
Walker

Foursquare Twitter

3 AM 6 AM 9 AM 12 PM 3 PM 6 PM 9 PM 12 AM0

0.1

0.2

0.3

Time

Pr
ob

ab
ili

ty

(c)

word counts in both networks
user (Twitter, Foursquare)

Michelle Jacobson art (65,2), style (16,3)
audit (3,2), grill (19,2)

Nathan Levinson happy (27,5), enjoy (9,4)
week (18,4), shows (6,6)

Andrew Nystrom awsm (2,3), kids (20,3)
red (61,3), open (11,4)

Liza Sperling ask (6,5), co!ee (8,3)
mochi (1,3), hangout (5,2)

Tristan Walker win (19,4), amazing (55,5)
awesome (51,4), please (9,4)

(d)

Fig. 4.2 Case study: five real-world users with their social, spatial, temporal, and text distributions. (a) Social.
(b) Spatial. (c) Temporal. (d) Text

Facebook accounts instead of Twitter accounts. However, in anchor link prediction problem, we need
to extract a set of features about a pair of user accounts in two different networks separately. The social
neighbors for two user accounts are two disjoint sets of user accounts in two separate networks. There
cannot exist any shared nodes among the neighbors of the pair of user accounts. In the following part,
we will introduce the extension of several social features to multi-network settings.

Let (u(1)i , u
(2)
j) be a potential anchor link between these two networks, and A+

train be the set of
existing anchor links in the training set. Here we extend the definitions of some commonly used
social closeness features in link prediction, i.e., “common neighbors,” “Jaccard’s coefficient,” and
“Adamic/Adar measure,” to the inter-network scenarios for anchor links specifically.

• Extended Common Neighbor: The extended common neighbor measure ECN(u
(1)
i , u

(2)
j) repre-

sents the number of “common” neighbors between u
(1)
i in network G(1) and u

(2)
j in network G(2).

We can denote the neighbors of u(1)i in network G(1) as Γ (u
(1)
i), and the neighbors of u(2)j in

jwzhanggy@gmail.com

134 4 Supervised Network Alignment

network G(2) as Γ (u
(2)
j). It is easy to identify that the sets Γ (u

(1)
i) and Γ (u

(2)
j) contain the users

from two different networks, respectively, which are isolated without any common entries, i.e.,
Γ (u

(1)
i) ∩ Γ (u

(2)
j) = ∅.

Meanwhile, based on the existing anchor linksA+
train, some of the users in Γ (u

(1)
i) and Γ (u

(2)
j)

can correspond to the accounts of the same users in these two networks, who are actually connected
by the anchor links in A+

train. Therefore, based on the anchor links in set A+
train, the extended

common neighbor measure between these two users can be defined as the number of shared anchor
users in their neighbor sets, respectively.

Definition 4.1 (Extended Common Neighbor) The measure of extended common neighbor is
defined as the number of shared users between Γ (u

(1)
i) and Γ (u

(2)
j).

ECN(u
(1)
i , u

(2)
j)

=
∣∣∣{(u(1)p , u(2)q)|(u(1)p , u(2)q) ∈ A+

train, u
(1)
p ∈ Γ (u

(1)
i), u(2)q ∈ Γ (u

(2)
j)}

∣∣∣

=

∣∣∣∣∣∣∣
Γ (u

(1)
i)

⋂

A+
train

Γ (u
(2)
j)

∣∣∣∣∣∣∣
. (4.1)

Example 4.3 For instance, given an input network in Fig. 4.3 involving six users, there exist
two known anchor links and the existing anchor link set A+

train = {(AliceF ,AliceT), (CindyF ,

CindyT)}, where the subscript denotes the network identifier (F: Foursquare, T: Twitter). Based

"

"

"

"

"

IULHQG

IULHQG

IULHQG

IULHQG IROORZ

IROORZ
IROORZ

DQFKRU�OLQNV

)RXUVTXDUH�1HWZRUN 7ZLWWHU�1HWZRUN

"

"

Alice

Bob

Cindy

David

Ella

Frank

Alice

Bob

Cindy

Ella

David

Frank

Fig. 4.3 An example of aligned social networks for feature extraction

jwzhanggy@gmail.com

4.3 Supervised Full Network Alignment 135

on the input networks, the extended common neighbor feature between two different user pairs
(BobF , BobT) and (DavidF ,DavidT) can be computed as follows:
(1) (BobF , BobT): We have the neighborhood sets of users BobF and BobT in the Foursquare

and Twitter networks to be sets Γ (BobF) = {CindyF ,DavidF } and Γ (BobT) =
{CindyT ,DavidT , F rankT }. We have

ECN(BobF , BobT) =

∣∣∣∣∣∣∣
Γ (BobF)

⋂

A+
train

Γ (BobT)

∣∣∣∣∣∣∣

= |{(CindyF , CindyT)}|
= 1. (4.2)

(2) (DavidF ,DavidT): We can represent the neighborhood sets of DavidF and DavidT
in Foursquare and Twitter to be Γ (DavidF) = {BobF , F rankF } and Γ (DavidT) =
{BobT , F rankT }. According to the existing anchor link set, no shared users exist in the
neighbor sets of DavidF and DavidT . In other words, we have

ECN(DavidF ,DavidT) = 0. (4.3)

• Extended Jaccard’s Coefficient: The measure of Jaccard’s coefficient can also be extended to the
multi-network setting for anchor links using a similar method of extending common neighbor. The
extended Jaccard’s Coefficient measure EJC(u

(1)
i , u

(2)
j) is a normalized version of the extended

common neighbor, i.e., ECN(u
(1)
i , u

(2)
j) divided by the total number of distinct users in Γ (u

(1)
i)

and Γ (u
(2)
j).

Definition 4.2 (Extended Jaccard’s Coefficient) Given the neighborhood sets of users u(1)i and
u
(2)
j in networks G(1) and G(2), respectively, the Extended Jaccard’s Coefficient of user pair u(1)i

and u
(2)
j can be represented as

EJC(u
(1)
i , u

(2)
j) =

∣∣∣Γ (u
(1)
i)
⋂

A+
train

Γ (u
(2)
j)
∣∣∣

∣∣∣Γ (u
(1)
i)
⋃

A+
train

Γ (u
(2)
j)
∣∣∣
, (4.4)

where
∣∣∣∣∣∣∣
Γ (u

(1)
i)

⋃

A+
train

Γ (u
(2)
j)

∣∣∣∣∣∣∣
= |Γ (u

(1)
i)| + |Γ (u

(2)
j)| −

∣∣∣∣∣∣∣
Γ (u

(1)
i)

⋂

A+
train

Γ (u
(2)
j)

∣∣∣∣∣∣∣
. (4.5)

Example 4.4 For example, based on the aligned social networks in Fig. 4.3, we can compute the
extended Jaccard’s Coefficient of user pair (BobF , BobT) to be

EJC(BobF , BobT) =

∣∣∣Γ (BobF)
⋂

A+
train

Γ (BobT)
∣∣∣

∣∣∣Γ (BobF)
⋃

A+
train

Γ (BobT)
∣∣∣

= 1
4
. (4.6)

jwzhanggy@gmail.com

136 4 Supervised Network Alignment

• Extended Adamic/Adar Index: In addition, the Adamic/Adar measure can also be extended to
the multi-network setting, where the common neighbors are weighted by their average degrees in
both social networks.

Definition 4.3 (Extended Adamic/Adar Index) The Extended Adamic/Adar Index of the user
pairs u(1)i and u

(2)
j across networks can be represented as

EAA(u
(1)
i , u

(2)
j)

=
∑

∀(u(1)p ,u
(2)
q)∈Γ (u

(1)
i)
⋂

A+
train

Γ (u
(2)
j)

log−1

(
|Γ (u

(1)
p)| + |Γ (u

(2)
q)|

2

)

. (4.7)

In the EAA definition, for the common neighbors shared by u
(1)
i and u

(2)
j , their degrees are

defined as the average of their degrees in networks G(1) and G(2), respectively. Considering that
different networks are of different scales, like Twitter is far larger than Foursquare, the node degree
measure can be dominated by the degree of the larger networks. Some other weighted forms of
the degree measure, like α · |Γ (u

(1)
p)| + (1 − α) · |Γ (u

(2)
q) (α ∈ [0, 1]), can be applied to replace

|Γ (u
(1)
p)|+|Γ (u

(2)
q)|

2 in the definition.

In addition to the social features mentioned above, heterogeneous social networks also involve
abundant information about: where, when, and what. In the following part, we will introduce how
to exploit the spatial, temporal, and text content information of different user accounts to facilitate
anchor link prediction.

4.3.1.2 Spatial Check-In Distribution Features
Besides the social connection information, users’ activities in the offline world may also provide
important signals for inferring the anchor links across the networks as indicated in Fig. 4.2b. We
notice that users in different social networks usually check-in at similar locations in real life, such
as their home, working places, traveling spots, etc. The similarity between the spatial distributions of
two user accounts from different social networks can also be used to help locate the same user.

Each location can be represented as a pair of (latitude, longitude) = # ∈ L(1) (or # ∈ L(2)).
Three different measures have been introduced in [12] to evaluate the similarity between the spatial
distributions of two users accounts. Given a user u(1)i in network G(1), we can represent the locations
she/he has ever visited as set L(u(1)i) ⊂ L(1). In a similar way, we can also represent the set of location
visited by user u(2)j as set L(u(2)j) ⊂ L(2).

• Number of Shared Locations: Formally, we introduce a notation l1 = l2 to denote that these two
locations are the same location, i.e., sharing common latitude and longitude. The number of shared
locations which have been visited by users u(1)i and u

(2)
j can be denoted as

∣∣∣{(l(1), l(2))|l(1) ∈ L(u
(1)
i), l(2) ∈ L(u

(2)
j), l(1) = l(2)}

∣∣∣ . (4.8)

• Cosine Similarity Between Location Vectors: Let L = L(1) ∪ L(2) be the set of all locations in
both network G(1) and network G(2), for user u(1)i (or u(2)j) in these two networks, the locations

visited by them can be organized as a binary vector of length |L|, i.e., l(u(1)i) ∈ R|L| (or l(u(2)j) ∈
R|L|), the entries in which denote the visiting times for users at these locations. The similarity of

jwzhanggy@gmail.com

4.3 Supervised Full Network Alignment 137

the location visiting records between the users u(1)i and u(2)j can be denoted as the cosine similarity

of the location-visiting record vectors l(u(1)i) and l(u(2)j), which can be used as another feature
based on the location check-in records

l(u(1)i)*l(u(2)j)
√(

l(u(1)i)*l(u(1)i)
) (

l(u(2)j)*l(u(2)j)
) . (4.9)

• Average Distance of Visited Locations: The physical distance between the regions that users pairs
are active in can indicate their potential similarity from the geographical perspective. The average
distance between the locations visited by the users u(1)i and u(2)j can be calculated as another feature
based on the check-in records

D(L(u
(1)
i), L(u

(2)
j)) =

∑
l(1)∈L(u(1)i)

∑
l(2)∈L(u(2)j)

D(l(1), l(2))

|L(u(1)i)||L(u(2)j)|
, (4.10)

where termD(l(1), l(2)) represents the distance between locations l(1) and l(2) (Manhattan distance
can be used here).

4.3.1.3 Temporal Distribution Features
We also notice that users in different social networks usually publish posts at similar time slots in real
life, e.g., hours after work and weekends, etc. Such temporal distribution can effectively indicate the
user’s online activity patterns. For example, some users may like to send tweets at night, while other
users may like to write tweets at commuting time on the bus or train. The temporal distribution of
different user accounts can also help us find the anchor links between two networks.

Users’ online social activities can be organized into a temporal vector of length 24, where each
entry denotes the ratio of activities in each of the time bin. For instance, the temporal activity vector
of user u(1)i can be represented as a vector t(u(1)i) ∈ R24. Similarly, we can also obtain the temporal
activity similarity of users from different networks by calculating either the inner product or the cosine
similarity of these two temporal activity vectors as follows:

(1) inner product: t(u(1)i)*t(u(2)j), (4.11)

(2) cosine similarity:
t(u(1)i)*t(u(2)j)

√(
t(u(1)i)*t(u(1)i)

) (
t(u(2)j)*t(u(2)j)

) . (4.12)

4.3.1.4 Textual Content Features
According to the textual content analysis provided in the table in Fig. 4.2d, the textual content of posts
written by users in different social networks can also be a great hint for the anchor links, because
different users may have different choices of words in their posts. The words used by the users can
reveal either their personal habits or their word usage patterns.

The post contents written by each user can be converted into a bag-of-words vector weighted
by TF-IDF. Let W denote the set of words used by all the users in networks G(1) and G(2). The
word usage record vectors of users u(1)i and u

(2)
j in these two networks can be represented as vectors

w(u(1)i) ∈ R|W | and w(u(2)j) ∈ R|W |, respectively. Similar to the temporal activities information, the

jwzhanggy@gmail.com

138 4 Supervised Network Alignment

inner product and cosine similarity can be applied to these two vectors to denote how similar these
users are in the textual word usage patterns:

(1) inner product: w(u(1)i)*w(u(2)j), (4.13)

(2) cosine similarity:
w(u(1)i)*w(u(2)j)

√(
w(u(1)i)*w(u(1)i)

) (
w(u(2)j)*w(u(2)j)

) . (4.14)

4.3.2 Supervised Anchor Link PredictionModel

With the features introduced in the previous subsection, in this part, we will introduce the supervised
anchor link prediction model. We will provide the general description of the model architecture, and
then use an example to show how to build the model.

Given the multiple aligned social networks, via manual labeling, we can identify a set of existing
anchor links, denoted as set A+

train, and a set of non-existing anchor links, denoted as set A−
train. The

anchor links in sets A+
train and A

−
train are assigned with the positive and negative labels, respectively,

i.e., {−1,+1}, depending on whether they exist or not. For instance, given a link l ∈ A+
train, it will

be associated with a positive label, i.e., yl = +1, while if link l ∈ A−
train, it will be associated with

a negative label, i.e., yl = −1. With the information across these two aligned heterogeneous social
networks, a set of features introduced in the previous subsection can be extracted for the links in sets
A+

train and A−
train. For instance, for a link l in the training set A+

train (or A
−
train), we can represent its

feature vector as xl , which will be called an anchor link instance and each feature is an attribute of the
anchor link (more information about instance, attribute, and label concepts is available in Chap. 2.2).
With these anchor link instances and their labels, a supervised learning model can be trained, like the
classification models SVM (support vector machine), Decision Tree, or neural networks.

In the test procedure, for each link l in the test set Atest , we can represent it with a similar set
of features (or attributes) and denote its feature vector as xl . However, we don’t know its label, and
we may want to determine whether it exists or not (its label is positive or negative). By applying the
trained model to the feature vector of the anchor link, we will obtain a prediction label, which will be
returned as the final result.

Example 4.5 In Fig. 4.4, we show an example of the supervised anchor link prediction model
architecture. Given the input aligned networks, we can identify a set of existing and non-existing
anchor links between them. These links can be used as the training set with the existing anchor
links as the positive instances and non-existing ones as the negative instances. Formally, we can
denote the training set as Atrain, where the sets A+

train = {(AF ,AT), (CF ,CT)} and A−
train =

{(AF ,CT), (BF ,CT), . . .} (the subscripts denotes the networks they belong to, i.e., F: Foursquare;
T: Twitter).

These anchor links are labeled as the positive and negative instances, respectively, where the
existing anchor links are assigned with the positive label and the non-existing anchor links are assigned
with the negative label. Based on the heterogeneous information inside these two networks, a group
of features (i.e., the features that we have introduced in the previous part) can be extracted for these
links in the training sets. With the training data, a supervised learning model can be built, and further
be applied to the feature vectors of some unknown anchor links, e.g., (BF , BT), which will output
either a label or a score indicating its existence confidence scores.

jwzhanggy@gmail.com

4.3 Supervised Full Network Alignment 139

$OLJQHG�QHWZRUN�
VWUXFWXUH

OLQN IHDWXUHV ODEHO

�$)��$7� ��

�&)��&7� ��

�$)��&7� ��

�$)��'7� ��

LQIRUPDWLRQ�XVHG�WR�H[WUDFW�
IHDWXUH�YHFWRUV�IRU�WKHVH�DQFKRU�OLQNV

�%)��%7�
VXSHUYLVHG�OHDUQLQJ�

PRGHO

OLQN�WR�EH�SUHGLFWHG

ODEHO�VFRUH

H[LVWLQJ
OLQNV

QRQ�H[LVWLQJ
OLQNV

"

"

"
IULHQG

IULHQG IROORZ

IROORZIROORZ

DQFKRU�
OLQNV

)RXUVTXDUH�
1HWZRUN

7ZLWWHU�
1HWZRUN

A

B

C

D

E

F

A

B

C

E

D

F

Fig. 4.4 An example of supervised anchor link prediction framework

Meanwhile, due to the one-to-one cardinality constraint on the anchor links, among all the potential
anchor links incident to each user, only one of them will be positive and the remaining ones will be
all negative. In other words, the negative training set is usually much larger than the positive set in the
anchor link prediction model. In this part, we will not handle such a challenging problem, which will
be taken care of in Sect. 4.4 instead.

4.3.3 Stable Matching

After extracting all the four types of heterogeneous features, we can train a binary classifier, such
as SVM or logistic regression, for anchor link prediction. However, in the inference process, the
predictions of the binary classifier cannot be directly used as anchor links due to the following
issues:

• The inference of conventional classifiers are designed for constraint-free settings, and the one-to-
one constraint may not necessarily hold in the label prediction of the classifier (e.g., SVM).

• Most classifiers also produce output scores, which can be used to rank the data points in the
test set. However, these ranking scores are uncalibrated in scale to anchor link prediction task.
Existing classifier calibration methods [29] can only be applied to classification problems without
any constraint.

In order to tackle the above issues, we will introduce an inference process, called MNA (Multi-
Network Anchoring) as proposed in [12], to infer anchor links based upon the ranking scores of the
classifier. This model is motivated by the stable marriage problem [5] in mathematics.

Example 4.6 We first use a toy example in Fig. 4.5 to illustrate the main idea of MNA. Suppose in
Fig. 4.5a, we are given the ranking scores from the classifiers, between the four user pairs across

jwzhanggy@gmail.com

140 4 Supervised Network Alignment

Fig. 4.5 An example of
anchor link inference by
different methods. (a) is
the input, ranking scores.
(b)–(d) are the results of
different methods for
anchor link inference

0.8
0.6

0.1

0.4

Network Network

u(1)
1

u(1)
2 u(2)

2

u(2)
1

G(1)
G(2)

(a) input/ranking scores

Network NetworkG(1)
G(2)

1

2

1

2

a

c

(b) link prediction

Network NetworkG(1) G(2)

1

2

1

2

b

c

(c) maximize sum of weights (1:1
constrained)

Network NetworkG(1) G(2)

1

2

1

2

a

d

(d) Mna method

two networks (i.e., network G(1) and network G(2)). We can see in Fig. 4.5b that link prediction
methods with a fixed threshold may not be able to predict well, because the predicted links do not
satisfy the constraint of one-to-one relationship. Thus one user account in networkG(1) can be linked
with multiple accounts in network G(2). In Fig. 4.5c, weighted maximum matching methods can
find a set of links with the maximum sum of weights. However, it is worth noting that the input
scores are uncalibrated, so the maximum weight matching may not be a good solution to the anchor
link prediction problems. The input scores only indicate the ranking of different user pairs, i.e., the
preference relationship among different user pairs.

Here we say “node x prefers node y over node z,” if the score of pair (x, y) is larger than the
score of pair (x, z). For example, in Fig. 4.5c, the weight of pair a, i.e., Score(a) = 0.8, is larger
than Score(c) = 0.6. It shows that user u(1)1 (the first user in network G(1)) prefers u(2)1 over u(2)2 . The
problem with the prediction result in Fig. 4.5c is that the pair (u(1)1 , u

(2)
1) should be more likely to be

an anchor link due to the following reasons: (1) u(1)1 prefers u(2)1 over u(2)2 ; (2) u(2)1 also prefers u(1)1

over u(1)2 .
By following such an intuition, we can obtain the final stable matching result in Fig. 4.5d, where

anchor links (u(1)1 , u
(2)
1) and (u

(1)
2 , u

(2)
2) are selected in the matching process.

Definition 4.4 (Matching) Mapping µ : U (1)∪U (2) → U (1)∪U (2) is defined to be a matching iff (1)
|µ(u(1)i)| = 1,∀u(1)i ∈ U (1) and µ(u

(1)
i) ∈ U (2); (2) |µ(u(2)j)| = 1,∀u(2)j ∈ U (2) and µ(u

(2)
j) ∈ U (1);

and (3) µ(u(1)i) = u
(2)
j iff µ(u(2)j) = u

(1)
i .

Definition 4.5 (Blocking Pair) A pair (u(1)i , u
(2)
j) is a blocking pair iff u(1)i and u(2)j both prefer each

other over their current assignments, respectively in the predicted set of anchor links A′.

Definition 4.6 (Stable Matching) An inferred anchor link setA′ is stable if there is no blocking pair.

jwzhanggy@gmail.com

4.3 Supervised Full Network Alignment 141

Based on the result from the previous step, MNA formulates the anchor link pruning problem as
a stable matching problem between user accounts in network G(1) and accounts in network G(2).
Assume that we have two sets of unlabeled user accounts, i.e., U (1) in network G(1) and U (2) in
network G(2). Each user u(1)i has a ranking list or preference list P(u

(1)
i) over all the user accounts in

network G(2) (u(2)j ∈ U (2)) based upon the input scores of different pairs.

Example 4.7 For example, in Fig. 4.5a, the preference list of node u(1)1 is P(u
(1)
1) = (u

(2)
1 > u

(2)
2),

indicating that node u
(2)
1 is preferred by u

(1)
1 over u

(2)
2 . The preference list of node u

(1)
2 is also

P(u
(1)
2) = (u

(2)
1 > u

(2)
2). Similarly, a preference list for each user account in network G(2) can

also be built. In Fig. 4.5a, P(u
(2)
1) = P(u

(2)
2) = (u

(1)
1 > u

(1)
2).

The proposed MNA method for anchor link prediction is shown in Algorithm 1. In each iteration,
MNA first randomly selects a free user account u(1)i from network G(1). Then MNA gets the most
preferred user node u(2)j by u

(1)
i in its preference list P(u

(1)
i), and removes u(2)j from the preference

list, i.e., P(u
(1)
i) = P(u

(1)
i) \ u

(2)
j . If u(2)j is also a free account, MNA adds the pair of accounts

(u
(1)
i , u

(2)
j) into the current solution set A′. Otherwise, u(2)j is already occupied with u

(1)
p in A′.

MNA then examines the preference of u(2)j . If u(2)j also prefers u(1)i over u(1)p , it means that the pair

(u
(1)
i , u

(2)
j) is a blocking pair. MNA removes the blocking pair by replacing the pair (u(1)p , u

(2)
j) in

the solution set A′ with the pair (u(1)i , u
(2)
j). Otherwise, if u(2)j prefers u(1)p over u(1)i , MNA starts the

next iteration to reach out the next free node in network G(1). The algorithm stops when all the users

Algorithm 1 Multi-network stable matching
Require: two heterogeneous social networks, G(1) and G(2).

a set of known anchor links A
Ensure: a set of inferred anchor links A′

1: Construct a training set of user account pairs with known labels using A.
2: For each pair (u(1)i , u

(2)
j), extract four types of features.

3: Training classification model C on the training set.
4: Perform classification using model C on the test set.
5: For each unlabeled user account, sort the ranking scores into a preference list of the matching accounts.
6: Initialize all unlabeled u

(1)
i in G(1) and u

(2)
j in G(2) as free

7: A′ = ∅
8: while ∃ free u(1)i in G(1) and u

(1)
i ’s preference list is non-empty do

9: Remove the top-ranked account u(2)j from u
(1)
i ’s preference list

10: if u
(2)
j is free then

11: A′ = A′ ∪ {(u(1)i , u
(2)
j)}

12: Set u(1)i and u
(2)
j as occupied

13: else
14: ∃u(1)p that u(2)j is occupied with.

15: if u
(2)
j prefers u(1)i to u(1)p then

16: A′ = (A′ \ {(u(1)p , u
(2)
j)}) ∪ {(u(1)i , u

(2)
j)}

17: Set u(1)p as free and u
(1)
i as occupied

18: end if
19: end if
20: end while

jwzhanggy@gmail.com

142 4 Supervised Network Alignment

in network G(1) are occupied, or all the preference lists of free accounts in network G(1) are empty.
Finally, the selected anchor links in set A′ will be returned as the final network alignment result.

4.4 Supervised Partial Network Alignment

The method MNA introduced in the previous section assumes that the online social networks are
fully aligned, and all the users in the networks are anchor users, who will all be connected by the
anchor links in the final results. However, in the real world, such a strong assumption can hardly hold.
These online social networks generally contain different groups of users, which can be highly likely
to be partially aligned actually. For instance, As pointed out in [6], by the end of 2013, about 42%
of online adults are using multiple social sites at the same time. Meanwhile, 93% of Instagram users
are involved in Facebook concurrently and 53% Twitter users are using Instagram as well [16]. In
other words, there still exist a large number of users who merely use Instagram or Twitter but are not
involved in Facebook, which will make these online social networks partially aligned [37,38] instead.

4.4.1 Partial Network Alignment Description

Different from the “supervised full network alignment” problem, we will study a more general partial
network alignment problem in this section. There exist several significant differences between these
two problems, which are provided as follows to help the readers distinguish these two works. Firstly,
the networks studied in this section are partially aligned [37], which contain a large number of anchor
and non-anchor users [37] at the same time. Secondly, the networks studied here are not confined
to the Foursquare and Twitter social networks, and a more general feature extraction method will be
needed. We hope a minor revision of the “partial network alignment” problem can be mapped to
many other existing tough problems, e.g., large biology network alignment [2], entity resolution in
database integration [3], ontology matching [8], and various types of entity matching in online social
networks [19]. Thirdly, due to the cardinality constraints on the anchor links as mentioned at the
end of Sect. 4.3.2, the number of positive and negative anchor link instances across networks can be
highly imbalanced, i.e., the negative training set is far larger than the positive training set. Such a class
imbalance problemwill make most of the existing supervised classification model fail to work. Finally,
many of the users will stay isolated in the alignment results, since they can be non-anchor users
actually. The constraint on anchor links is updated to “one-to-one≤” (called “one-to-at-most-one”),
i.e., each user in one network can be mapped to at most one user in another network. Across partially
aligned networks, only anchor users can be connected by anchor links. Therefore, identifying the non-
anchor users from networks and pruning all the predicted potential anchor links connected to them is
a novel yet challenging problem. The “one-to-one≤” constraint on anchor links can distinguish the
“partial network alignment” problem from most existing link prediction problems. For example, in
traditional link prediction and link transfer problems [20, 21, 37], the constraint on links is “many-to-
many,” while in the “anchor link inference” problem [12] across fully aligned networks, the constraint
on anchor links is strictly “one-to-one.”

The supervised partial network alignment problem studied in this section follows the identical
definition as that introduced in Sect. 4.2, except that the anchor links will follow the “one-to-one≤”
constraint instead. To address such a problem, in this section, we will introduce the PNA method
proposed in [38], which contains three phases: (1) general feature extraction based on meta paths,
(2) class-imbalance anchor link classification, and (3) generic stable matching to preserve the
“one-to-one≤” constraint on anchor links.

jwzhanggy@gmail.com

4.4 Supervised Partial Network Alignment 143

4.4.2 Inter-NetworkMeta Path Based Feature Extraction

Different from the diverse features extracted for the Twitter and Foursquare networks specifically
as introduced in Sect. 4.3.1, in this part, we will introduce two different general feature extraction
methods across online social networks, including both the meta path [37] based explicit feature
extraction and tensor [11] based latent feature extraction.

4.4.2.1 Inter-NetworkMeta Paths
The inter-network meta path has been introduced in the previous chapter already (detailed information
is available in Sect. 3.5). Via the instances of inter-network meta paths, users across aligned social
networks can be extensively connected to each other. In these two partially aligned online social
networks (e.g., G = ((G(1),G(2)), (A(1,2)))) studied here, we can represent their network schemas in
Fig. 4.6, where theWord, Location, and Timestamp node types are attached to the Post node type. For
the network schema of networkG(1), users may also create several lists, which can contain a bunch of
location check-ins. Various inter-network meta paths between G(1) (i.e., Foursquare) and G(2) (i.e.,
Twitter) can be defined as follows:

• Common Out Neighbor Inter-Network Meta Path (Ψ1): User(1)
f ollow−−−−→ User(1)

Anchor←−−−→ User(2)

f ollow←−−−− User(2) or “U (1) → U (1) ↔ U (2) ← U (2)” for short.
• Common In Neighbor Inter-Network Meta Path (Ψ2): User(1)

f ollow←−−−− User(1)
Anchor←−−−→ User(2)

f ollow−−−−→ User(2) or “U (1) ← U (1) ↔ U (2) → U (2).”
• Common Out In Neighbor Inter-Network Meta Path (Ψ3): User(1)

f ollow−−−−→ User(1)
Anchor←−−−→

User(2)
f ollow−−−−→ User(2) or “U (1) → U (1) ↔ U (2) → U (2).”

• Common In Out Neighbor Inter-Network Meta Path (Ψ4): User(1)
f ollow←−−−− User(1)

Anchor←−−−→
User(2)

f ollow←−−−− User(2) or “U (1) ← U (1) ↔ U (2) ← U (2).”

Besides the users who can be shared across the online social networks, many other nodes can be
shared across networks as well by capturing the identical physical information, like words, location
latitude-longitude pairs, and timestamps, which are defined as the bridge nodes [38] across the aligned
social networks.

Fig. 4.6 Schema of
aligned heterogeneous
network

3RVW

8VHU

:RUG 7LPH
VWDPS

/RFDWLRQ

ZULWHZULWH��

FKHFNLQ�DWFKHFNLQ�DW��

FRQWDLQ

FRQWDLQ��

DW

DW��

IROORZ�IROORZ��

6FKHPD�RI�1HWZRUN���

3RVW

8VHU

:RUG 7LPH
VWDPS

/RFDWLRQ

ZULWHZULWH��

FKHFNLQ�DWFKHFNLQ�DW��

FRQWDLQ

FRQWDLQ��

DW

DW��

IROORZ�IROORZ��

6FKHPD�RI�1HWZRUN���

DQFKRU

/LVW

FUHDWH
FUHDWH��

FRQWDLQ��

FRQWDLQ

EULGJH�QRGH�W\SHV DQFKRU�OLQN�W\SH

jwzhanggy@gmail.com

144 4 Supervised Network Alignment

Definition 4.7 (Bridge Nodes) The bridge nodes shared between G(1) and G(2) can be represented
as B(1,2) = {v|(v ∈ V(1) \ U (1)) ∧ (v ∈ V(2) \ U (2))}.

The bridge node concept is different from the anchor node concept defined before. Different
from the concrete user information entities denoted by anchor node, the bridge node can get shared
across networks merely because of their identical physical meanings (e.g., the words) or physical
representations (e.g., the POI latitude-longitude pairs or timestamps).

For instance, in the network schema as shown in Fig. 4.6, the word node type, location node type,
and timestamp node type are the bridge node types shared by the networks G(1) and G(2). These
inter-network meta paths defined above all involve one single node type, i.e., the “User” node type,
across the partially aligned social networks. In addition to these meta paths, there can exist many other
inter-network meta paths consisting of user node type and other bridge node types from Foursquare
to Twitter, e.g., Location, Word, and Timestamp.

• Common Location Check-in Inter-Network Meta Path 1 (Ψ5): User(1)
write−−−→ Post(1)

check-in at−−−−−−→
Location

check-in at←−−−−−− Post(2)
write←−−− User(2) or “U (1) → P(1) → L ← P(2) ← U (2).”

• Common Location Check-in Inter-Network Meta Path 2 (Ψ6): User(1)
create−−−→ List(1)

contain−−−−→
Location

check-in at←−−−−−− Post(2)
write←−−− User(2) or “U (1) → I(1) → L ← P(2) ← U (2).”

• Common Timestamps Inter-Network Meta Path (Ψ7):User(1)
write−−−→ Post(1)

at−→ T ime
at←− Post(2)

write←−−− User(2) or “U (1) → P(1) → T ← P(2) ← U (2).”
• Common Word Usage Inter-Network Meta Path (Ψ8): User(1)

write−−−→ Post(1)
contain−−−−→ Word

contain←−−−− Post(2)
write←−−− User(2) or “U (1) → P(1) → W ← P(2) ← U (2).”

4.4.2.2 Explicit Inter-Network Adjacency Features Extraction
Based on the above defined inter-network meta paths, different kinds of inter-network meta path based
adjacency relationship can be extracted from the network. Formally, a new concept of inter-network
adjacency score has been defined to describe such relationships among users across partially aligned
social networks.

Definition 4.8 (Inter-Network Meta Path Instance) Based on inter-network meta path Ψi =
T1

R1−→ T2
R2−→ · · · Rk−1−−−→ Tk , a concrete path ψ = n1 − n2 − . . . − nk−1 − nk is an instance of

Ψi iff nj is an instance of node type Tj , ∀j ∈ {1, 2, . . . , k} and (nj , nj+1) is an instance of link type

Tj
Rj−→ Tj+1, ∀j ∈ {1, 2, . . . , k − 1}.

Definition 4.9 (Inter-Network Adjacency Score) The inter-network adjacency score is quantified
as the number of concrete path instances of various inter-network meta paths connecting users across
networks. The inter-network adjacency score between u(1) ∈ U (1) and v(2) ∈ U (2) based on meta path
Ψi is defined as:

scoreΨi (u
(1), v(2)) =

∣∣∣{ψ |(ψ ∈ Ψi) ∧ (u(1) ∈ T1) ∧ (v(2) ∈ Tk)}
∣∣∣ , (4.15)

where path ψ starts and ends with node types T1 and Tk , respectively and ψ ∈ Ψi denotes that ψ is a
path instance of meta path Ψi .

jwzhanggy@gmail.com

4.4 Supervised Partial Network Alignment 145

Fig. 4.7 An example of
input aligned social
networks

friend

friend

friend

friend follow

follow
follow

anchor links

Foursquare Network Twitter Network

A

B

C

D

E

F

A

B

C

E

D

F

Example 4.8 For instance, given a pair of input aligned social networks as shown in Fig. 4.7, where
the Foursquare network is G(1) and the Twitter network is G(2), two meta paths can be defined as
follows:

1. U (1) → U (1) ↔ U (2) ← U (2)

2. U (1) → U (1) → U (1) ↔ U (2) ← U (2)

For a random user pair, like (BF ,ET), based on meta path 1, we identify one single path BF →
CF ↔ CT ← ET connecting these two users. Meanwhile, based on meta path 2, there will exist
another path connecting them, which includes BF → DF → FF ↔ FT ← ET . In other words, the
inter-network adjacency score between BF and ET based on meta paths 1 and 2 are both 1 actually.

The anchor adjacency scores among all users across partially aligned networks can be stored in
the anchor adjacency matrix as follows:

Definition 4.10 (Inter-Network Adjacency Matrix) Given a certain anchor meta path, e.g., Ψ , the
anchor adjacency matrix between networks G(1) and G(2) can be defined as AΨ ∈ N|U (1)|×|U (2)| and
AΨ (l,m) = scoreΨ (u

(1)
l , u

(2)
m) for users u(1)l ∈ U (1), u

(2)
m ∈ U (2).

Multiple anchor adjacency matrix can be grouped together to form a high-order tensor. A tensor
[11] is a multidimensional array and an N-order tensor is an element of the tensor product ofN vector
spaces, each of which can have its own coordinate system. As a result, a 1-order tensor is a vector,
a 2-order tensor is a matrix and tensors of three or higher order are called the higher-order tensor
[11, 18].

jwzhanggy@gmail.com

146 4 Supervised Network Alignment

Fig. 4.8 Tensor
decomposition

Definition 4.11 (Inter-Network Adjacency Tensor) Based on the eight defined inter-network meta
paths {Ψ1,Ψ2, . . . ,Ψ8}, a set of anchor adjacency matrices between users in two partially aligned
networks can be obtained to be {AΨ1,AΨ2 , . . . ,AΨ8}. With {AΨ1, AΨ2 , . . . , AΨ8}, a 3-order anchor
adjacency tensor X ∈ R|U (1)|×|U (2)|×8 can be constructed, where the ith layer of X is the anchor
adjacency matrix based on anchor meta path Ψi , i.e., X (:, :, i) = AΨi , i ∈ {1, 2, . . . , 8}.

Based on the anchor adjacency tensor, a set of explicit anchor adjacency features can be extracted
for anchor links across partially aligned social networks. For a certain anchor link (u

(1)
l , u

(2)
m), the

explicit anchor adjacency feature vectors extracted based on the anchor adjacency tensor X can be
represented as x = [x1, x2, . . . , x8] (i.e., the anchor adjacency scores between u

(1)
l and u

(2)
m based on

these 8 different anchor meta paths), where xk = X (l,m, k), k ∈ {1, 2, . . . , 8}.

4.4.2.3 Latent Topological Feature Vectors Extraction
Explicit anchor adjacency features can express manifest properties of the connections across
partially aligned networks and are the explicit topological features. Besides these explicit topological
connections, there can also exist some hidden common connection patterns [28] across partially
aligned networks. In [38], a group of latent topological feature vectors are extracted from the anchor
adjacency tensor.

As proposed in [11, 18], a higher-order tensor can be decomposed into a core tensor, e.g.,
G, multiplied by a matrix along each mode, e.g., A,B, . . . ,Z, with various tensor decomposition
methods, e.g., Tucker decomposition [11]. For example, in Fig. 4.8, the 3-order anchor adjacency
tensor X can be decomposed into three matrices A ∈ R|U (1)|×P , B ∈ R|U (2)|×Q, and C ∈ R8×R and a
core tensor G ∈ RP×Q×R , where P,Q,R are the number of columns of matrices A,B,C [11]:

X =
P∑

p=1

Q∑

q=1

R∑

r=1

gpqrap ◦ bq ◦ cr = [G;A,B,C], (4.16)

where ap ◦ bq denotes the vector outer product of ap and bq . Each row of A and B represents a latent
topological feature vector of users in U (1) and U (2), respectively [18].

4.4.3 Class-Imbalance ClassificationModel

Based on the one-to-one≤ cardinality constraint, the number of non-existing anchor links will be far
more than the existing anchor links. In other words, the negative instances will be far more than that
of the positive instances in both the training set and testing set of the supervised link prediction model.
To overcome such a disadvantage, in this part, we will introduce several existing techniques that can
be applied to sample or prune the training/testing sets.

jwzhanggy@gmail.com

4.4 Supervised Partial Network Alignment 147

4.4.3.1 Training Set Sampling
Based on the anchor adjacency scores calculated according to various anchor meta paths in previous
section, various supervised link prediction models [12,36,37] can be built to infer the potential anchor
links across networks. As proposed in [15, 17], conventional supervised link prediction methods [22]
can suffer from the class imbalance problem a lot. To address the problem, two effective methods
(down sampling [14] and over sampling [4]) can be applied.

Down sampling methods aim at deleting the unreliable negative instances from the training set. In
Fig. 4.9, we show the distribution of training instances in the feature space, where negative instances
can be generally divided into 4 different categories [14]:

• noisy instances: instances mixed in the positive instances;
• borderline instances: instances close to the decision boundary;
• redundant instances: instances which are too far away from the decision boundary in the negative

region;
• safe instances: instances which are helpful for determining the classification boundary.

Different heuristics have been proposed to remove the noisy instances and borderline instances,
like the Tomek links method proposed in [14, 23]. For any two given instances x1 and x2 of different
labels, pair (x1, x2) is called a tomek link if there exists no other instances, e.g., z, such that d(x1, z) <
d(x1, x2) and d(x2, z) < d(x1, x2). Examples that participate in Tomek links are either borderline or
noisy instances [14, 23]. As to the redundant instances, they will not harm correct classifications as
their existence will not change the classification boundary but they can lead to extra classification
costs. To remove the redundant instances, a consistent subset C of the training set will be created,
e.g., S [14]. Subset C is consistent with S if classifiers built with C can correctly classify instances
in S . Initially, C consists of all positive instances and one randomly selected negative instances. A
classifier, e.g., kNN , built with C is applied to S , where instances that are misclassified will be added
into C. The final set C only contains the safe links.

Another method to overcome the class imbalance problem in the training set is to over sample
the minority class. Many over sampling methods have been proposed, e.g., over sampling with
replacement, over sampling with “synthetic” instances [4]. Among them, the over sampling with
“synthetic” instances is frequently used due to its effectiveness and wide usage in many scenarios [4].
The minority class is over sampled by introducing new “synthetic” examples along the line segment
joining m of the k nearest minority class neighbors for each minority class instances. The value of
parameter m can be determined according to the ratio to over sample the minority class. For example,
if the minority class need to be over sampled by 200%, then m = 2. The instance to be created
between a certain example x and one of its nearest neighbor y can be denoted as x + θ*(x − y),

Fig. 4.9 Instance
distribution in feature
space

�
� ��

�� �

QRLV\�QHJDWLYH�LQVWDQFHVERUGHUOLQH�QHJDWLYH�LQVWDQFHV

UHGXQGDQW�QHJDWLYH�LQVWDQFHV VDIH�QHJDWLYH�LQVWDQFHV

SRVLWLYH�OLQNV

GHFLVLRQ�
ERXQGDU\

jwzhanggy@gmail.com

148 4 Supervised Network Alignment

where x and y are the feature vectors of two instances and θ* is the transpose of a coefficient vector
containing random numbers in range [0, 1].

4.4.3.2 Test Set Pre-pruning
Across two partially aligned social networks, users in a certain network can have a large number of
potential anchor link candidates in the other network, which can lead to great time and space costs
in predicting the anchor links. The problem can be even worse when the networks are of large scales,
e.g., containing millions or even billions of users, which can make the partial network alignment
problem unsolvable. To shrink size of the candidate set, a candidate pre-pruning step of links in the
test set will be conducted before applying the class imbalance link prediction model, i.e.,M, to links
in the test set.

Each user in one network can have millions of potential anchor link candidates in another network.
To address such a problem, the candidate pre-pruning step can be conducted on the test set L before
applying the built modelM to predict these links in L. The pre-pruningmethod adopted here includes
(1) profile pre-pruning and (2) inter-network adjacency score pre-pruning.

• profile pre-pruning: the profile information of users shared across partially aligned social networks,
e.g., Foursquare and Twitter, can include username and hometown [30]. Given an anchor link
(u

(1)
l , u

(2)
m) ∈ Atest , if the username and hometown of u(1)l and u

(2)
m are totally different, e.g.,

cosine similarity scores are 0, then link (u(1)l , u
(2)
m) will be pruned from the testing set Atest .

• inter-network adjacency score pruning: based on the explicit inter-network adjacency tensor X
introduced in the previous sections, for a given link (u

(1)
l , u

(2)
m) ∈ Atest , if its extracted explicit

inter-network adjacency features are all 0, i.e., X (l,m, x) = 0, x ∈ {1, 2, . . . , 8}, then link
(u

(1)
l , u

(2)
m) will be pruned from the testing set Atest .

Example 4.9 For example, in Fig. 4.10, we give 6 users in two different networks together with all
the 9 potential anchor links between them in the test set, where “William” and “Wm” are the same

William

New Jersey

Wm

NJ

Rebecca

Illinois

Becky

IL

Jonathan

California

Jon

CA

Input Test Set Pre-Pruning

William

New Jersey

Rebecca

Illinois

Jonathan

California

Wm

NJ

Becky

IL

Jon

CA

Traditional Stable Matching

William

New Jersey

Rebecca

Illinois

Jonathan

California

Wm

NJ

Becky

IL

Jon

CA

0.9

0.8

0.7
0.7
0.6

0.5

Generic Stable Matching (K = 1)

William

New Jersey

Rebecca

Illinois

Jonathan

California

Wm

NJ

Becky

IL

Jon

CA

0.9

0.8

0.7
0.7

0.5

Fig. 4.10 Partial network alignment with pruning

jwzhanggy@gmail.com

4.4 Supervised Partial Network Alignment 149

user in these two networks and the remaining users are all different users. Users’ profile information
(i.e., names and hometowns) is given in the figure. By applying the profile pre-pruningmethod, we can
remove 3 anchor links from the test set. The advantages of the pre-pruning will be more significant
when being applied to very large-scale real-world partially aligned social networks.

4.4.4 Generic Stable Matching

Given the user sets U (1) and U (2) of two partially aligned social networks G(1) and G(2), each user
in U (1)(or U (2)) has his preference over users in U (2)(or U (1)). Term vjP

(1)
ui vk can be used to denote

that ui ∈ U (1) prefers vj to vk for simplicity, where vj , vk ∈ U (2) and P
(1)
ui is the preference operator

of ui ∈ U (1). Similarly, we can use term uiP
(2)
vj uk to denote that vj ∈ U (2) prefers ui to uk in U (1)

as well.
Stable matching based method [12] introduced for MNA in Sect. 4.3.3 can only work well in fully

aligned social networks. However, in the real world, few social networks are fully aligned and lots of
users in social networks are involved in one network only, i.e., non-anchor users, and they should not
be connected by any anchor links. However, traditional stable matching method cannot identify these
non-anchor users and remove the predicted potential anchor links connected with them. To overcome
such a problem, the generic stable matching has been introduced in [38] to identify the non-anchor
users and prune the anchor link results to meet the one-to-one≤ constraint.

In partial network matching method PNA [38], a novel concept, self-matching, has been introduced,
which allows users to be mapped to themselves if they are discovered to be non-anchor users. In other
words, the non-anchor users will be identified as those who are mapped to themselves in the final
matching results.

Definition 4.12 (Self-matching) For the given two partially aligned networks G(1) and G(2), user
ui ∈ U (1) can have his preference P

(1)
ui over users in U (2) ∪ {ui} and ui preferring ui himself

denotes that ui is a non-anchor user and prefers to stay unconnected, which is formally defined as
self-matching.

Users in one social network will be matched with either partners in other social networks or
themselves according to their preference lists (i.e., from high preference scores to low preference
scores). Only partners that users prefer over themselves will be accepted finally, otherwise users will
be matched with themselves instead.

Definition 4.13 (Acceptable Partner) For a given matching µ : U (1) ∪ U (2) → U (1) ∪ U (2), the
mapped partner of users ui ∈ U (1), i.e., µ(ui), is acceptable to ui iff µ(ui)P

(1)
ui ui .

To cut off the partners with very low preference scores, the partial matching strategy is proposed
to obtain the promising partners, who will participate in the matching finally.

Definition 4.14 (Partial Matching Strategy) The partial matching strategy of user ui ∈ U (1), i.e.,
Q

(1)
ui , consists of the firstK the acceptable partners in ui’s preference list P

(1)
ui , which are in the same

order as those in P (1)
ui , and ui in the (K+1)th entry ofQ(1)

ui . ParameterK is called the partial matching
rate as introduced in [38].

jwzhanggy@gmail.com

150 4 Supervised Network Alignment

Fig. 4.11 An example of
partial matching strategy
(K = 2)

Preference List

Partial Matching Strategy
(K+1)th entry

Example 4.10 An example is given in Fig. 4.11, where to get the top two promising partners for the
user, the user himself is placed at the third cell in the preference list. All the remaining potential
partners will be cut off and only the top three users will participate in the final matching.

Based on the concepts of self-matching and partial matching strategy, the concepts of partial stable
matching and generic stable matching can be defined as follows:

Definition 4.15 (Partial Stable Matching) For a given matching µ, µ is (1) rational if
µ(ui)Q

(1)
ui ui,∀ui ∈ U (1) and µ(vj)Q

(2)
vj vj ,∀vj ∈ U (2), (2) pairwise stable if there exist no blocking

pairs in the matching results, and (3) stable if it is both rational and pairwise stable.

Definition 4.16 (Generic Stable Matching) For a given matching µ, µ is a generic stable matching
iff µ is a self-matching or µ is a partial stable matching.

Example 4.11 An example of generic stable matching is shown in the bottom two plots of Fig. 4.10.
Traditional stable matching can prune most non-existing anchor links and make sure the results
can meet the one-to-one constraint. However, it preserves the anchor links (Rebecca, Becky) and
(Jonathan, Jon), which are connecting non-anchor users actually. In the generic stable matching with
parameterK = 1, users will be either connected with their most preferred partner or stay unconnected.
Users “William” and “Wm” are matched as link (William, Wm) with the highest score. “Rebecca” and
“Jonathan” will prefer to stay unconnected as their most preferred partner “Wm” is connected with
“William” already. Furthermore, “Becky” and “Jon” will stay unconnected as their most preferred
partners “Rebecca” and “Jonathan” prefer to stay unconnected. In this way, generic stable matching
can further prune the non-existing anchor links (Rebecca, Becky) and (Jonathan, Jon).

The generic stable matching results can be achieved with the Generic Gale-Shapley algorithm,
whose pseudo-code is available in Algorithm 2.

jwzhanggy@gmail.com

4.5 Anchor Link Inference with Cardinality Constraint 151

Algorithm 2 Generic Gale-Shapley algorithm
Require: user sets of aligned networks: U (1) and U (2).

classification results of potential anchor links in L
known anchor links in A(1,2)

truncation rate K
Ensure: a set of inferred anchor links L′

1: Initialize the preference lists of users in U (1) and U (2) with predicted existence probabilities of links in L and known
anchor links in A(1,2), whose existence probabilities are 1.0

2: construct the truncated strategies from the preference lists
3: Initialize all users in U (1) and U (2) as free
4: L′ = ∅
5: while ∃ free u(1)i in U (1) and u

(1)
i ’s truncated strategy is non-empty do

6: Remove the top-ranked account u(2)j from u
(1)
i ’s truncated strategy

7: if u(2)j ==u(1)i then

8: L′ = L′ ∪ {(u(1)i , u
(1)
i)}

9: Set u(1)i as stay unconnected
10: else
11: if u

(2)
j is free then

12: L′ = L′ ∪ {(u(1)i , u
(2)
j)}

13: Set u(1)i and u
(2)
j as occupied

14: else
15: ∃u(1)p that u(2)j is occupied with.

16: if u
(2)
j prefers u(1)i to u

(1)
p then

17: L′ = (L′ − {(u(1)p , u
(2)
j)}) ∪ {(u(1)i , u

(2)
j)}

18: Set u(1)p as free and u
(1)
i as occupied

19: end if
20: end if
21: end if
22: end while

4.5 Anchor Link Inference with Cardinality Constraint

In the previous two sections, the anchor links are assumed to be subject to the one-to-one and
“one-to-one≤” constraints, respectively. Besides these two cases, users can also have multiple
accounts in one social network. For instance, some people will create multiple accounts in Facebook,
and tend to use different accounts to socialize with different groups of online friends. In such a
scenario, the cardinality constraint on the anchor links will become many-to-many or one-to-many.
In this section, we will introduce a model ITERCLIPS [43], which can infer the anchor links with a
general cardinality constraint, covering one-to-one, one-to-many, and many-to-many simultaneously.
The problem definition is identical to that introduced in Sect. 4.2, except that the positive and negative
instances labels become +1 and 0, respectively. Actually, the ITERCLIPS model to be introduced
here can not only infer the anchor links, but also be applied to solve many other types of link
prediction tasks.

4.5.1 Loss Function for Anchor Link Prediction

Let set L = U (1) × U (2) denote all the potential anchor links between networks G(1) and G(2), where
L = Atrain ∪ Atest . Based on the whole link set L, as introduced in the previous sections, a set of
features can be extracted for these links with the information available across the social networks,

jwzhanggy@gmail.com

152 4 Supervised Network Alignment

which can be represented as set X = {xl}l∈L (xl ∈ Rm,∀l ∈ L). Given the link existence label set
Y = {0, 1}, the objective of the anchor link prediction problem is to achieve a general link inference
function f : X → Y to map the link feature vectors to their corresponding labels. Here, 0 denotes the
label of the negative class, and +1 denotes the label of the positive class. Depending on the specific
application settings and information available in the networks, the feature vectors extracted for links
in L can be very diverse. Various explicit and latent features introduced in the previous sections can
be applied, and we will not repeat them here.

Formally, the loss introduced in the mapping f (·) can be represented as function L : X × Y → R
over the link feature vector/label pairs. Meanwhile, for one certain input feature vector xl of link
l ∈ L, its inferred label introducing the minimum loss can be denoted as:

ŷl = arg min
yl∈Y,w

L(xl , yl;w), (4.17)

where vector w represents the parameters involved in the mapping function f (·).
Therefore, given the pre-defined loss function L(·), the general form of the objective mapping

f : X → Y parameterized by vector w can be represented as:

f (x;w) = arg min
yl∈Y

L(x, y;w). (4.18)

In many cases (e.g., when the links are not linearly separable), the feature vector xl of link l

needs to be transformed as g(xl) ∈ Rk (k is the transformed feature number) and the transformation
function g(·) can be different kernel projections depending on the separability of instances. Here, we
can assume loss function L(·) to be linear based on some combined representation of the transformed
link feature vector g(xl)* and label yl , i.e.,

L(xl , yl;w) = (〈w, g(xl)〉 − yl)
2 = (w*g(xl) − yl)

2. (4.19)

Furthermore, based on all the links in L, the extracted feature vectors for these links can be
represented as matrix X = [g(xl1), g(xl2), . . . , g(xl|L|)]* ∈ R|L|×k (for simplicity, linear kernel
projection can used here, and g(xl) = xl). Meanwhile, their existence labels can be represented
as vector y = [yl1 , yl2 , . . . , yl|L|]*, where yl ∈ {0, 1},∀l ∈ L. Specifically, for the existing links
in A+

train, their labels are known to be positive in advance, i.e., yl = 1,∀l ∈ A+
train. According to

the above loss function definition, based on X and y, the loss introduced by all links in L can be
represented to be

L(X, y;w) = ‖Xw − y‖22 . (4.20)

To learn the parameter vectorw and infer the potential label vector y, the loss term introduced by all
the links in L will be minimized. Meanwhile, to avoid overfitting the training set, besides minimizing
the loss function L(X, y;w), a regularization term ‖w‖22 about the parameter vector w is added to the
objective function:

min
w,y

1
2

‖w‖22 +
c

2
‖Xw − y‖22 ,

s.t. y ∈ {0, 1}|L|×1, and yl = 1,∀l ∈ A+
train, (4.21)

where constant c denotes the weight of the loss term in the function.

jwzhanggy@gmail.com

4.5 Anchor Link Inference with Cardinality Constraint 153

4.5.2 Cardinality Constraint Description

The cardinality constraints define both the limit on link cardinality and the limit on node degrees
that those links are incident to. To be general, the links studied can be either uni-directional or bi-
directional, where uni-directional links are treated as bi-directional. For each node u ∈ V in the
network, we can represent the potential links going-out from u as set Γ out (u) = {l|l ∈ L, ∃v ∈
V, l = (u, v)}, and those going-into u as set Γ in(u) = {l|l ∈ L, ∃v ∈ V, l = (v, u)}. Furthermore,
with the link label variables {yl}l∈L, we can represent the out-degree and in-degree of node u ∈ V
as degreeout (u) =∑l∈Γ out (u) yl and degreein(u) =∑l∈Γ in(u) yl , respectively. Considering that the
node degrees cannot be negative, besides the upper bounds introduced by the cardinality constraints,
a lower bound “≥ 0” is also added to guarantee validity of node degrees by default.

One-to-One Cardinality Constraint
For the bi-directional anchor links with 1:1 cardinality constraint, the nodes in the information
networks can be attached with at most one such kinds of link. In other words, for all the nodes (e.g.,
u ∈ V) in the network, their in-degree and out-degree cannot exceed 1, i.e.,

0 ≤
∑

l∈Γ out (u)

yl ≤ 1,∀u ∈ V, and 0 ≤
∑

l∈Γ in(u)

yl ≤ 1,∀u ∈ V . (4.22)

One-to-Many Cardinality Constraint
Meanwhile, when aligning two network structured data sources, where the cardinality constraint on
anchor links is one-to-many. For instance, in some social networks, they may require the SSN or ID
number from users in registration and each user can only contain one single account. The alignment
of such a social network with the general social networks without such a limitation will be subject to
the one-to-many cardinality constraint instead. In such a case, for all the nodes (e.g., u ∈ V) in the
network, their out-degree cannot exceed N and the in-degree should be exactly 1, i.e.,

0 ≤
∑

l∈Γ out (u)

yl ≤ N,∀u ∈ V, and 1 ≤
∑

l∈Γ in(u)

yl ≤ 1,∀u ∈ V . (4.23)

Many-to-Many Cardinality Constraint
In many cases, there usually exist no specific cardinality constraints on the anchor links, and nodes
can be connected with each other freely. Simply, we assume the node in-degrees and out-degrees to
be limited by the maximum degree parameter N = |V| − 1, i.e.,

0 ≤
∑

l∈Γ out (u)

yl ≤ N,∀u ∈ V, and 0 ≤
∑

l∈Γ in(u)

yl ≤ N,∀u ∈ V . (4.24)

General Cardinality Constraint Representation
The cardinality constraint on links can be generally represented with the linear algebra equations. The
relationship between nodes V and links L can actually be represented as matrices Tout ∈ {0, 1}|V |×|L|

and Tin ∈ {0, 1}|V |×|L|, where entry Tout (u, l) = 1 iff l ∈ Γ out (u) and Tin(u, l) = 1 iff l ∈ Γ in(u).
Based on the link label vector y, the node out-degrees and in-degrees can be represented as vectors
Tout · y and Tin · y, respectively. The general representation of the cardinality constraints introduced
above can be rewritten as follows:

bout ! Tout · y ! b
out

, and bin ! Tin · y ! b
in
, (4.25)

jwzhanggy@gmail.com

154 4 Supervised Network Alignment

where vectors bout , b
out

, bin, and b
in

can take different values depending on the cardinality
constraint on the links (e.g., for the 1:1 constraint, the bounds will have values bout = bin = 0
and b

out = b
in = 1).

4.5.3 Joint Optimization Function

Based on the above remarks, the constrained optimization objective function of the problem can be
represented as

min
w,y

1
2

‖w‖22 +
c

2
‖Xw − y‖22 ,

s.t. y ∈ {0, 1}|L|×1, yl = 1,∀l ∈ E,

bout ! Tout · y ! b
out

,bin ! Tin · y ! b
in
. (4.26)

The above objective function involves variables w and y at the same time, which is actually not
jointly convex and can be very challenging to solve. In [43], the proposed ITERCLIPS model addresses
the function with an alternative updating framework by fixing one variable and updating the other one
iteratively. The framework involves two steps:
Step 1: Fix y and Update w

By fixing y (i.e., treating y as a constant vector), the objective function aboutw can be simplified as

min
w

1
2

‖w‖22 +
c

2
‖Xw − y‖22 . (4.27)

Let h(w) = 1
2 ‖w‖22 + c

2 ‖Xw − y‖22. By taking the derivative of the function h(w) regarding w we
can have

dh(w)
dw

= w+ cXwX* − cyX*. (4.28)

By making the derivation to be zero, the optimal vector w can be represented to be

w = c(I+ cX*X)−1X*y, (4.29)

and the minimum value of the function will be

c

2
y*y − c2

2
y*X(I+ cX*X)−1X*y. (4.30)

Step 2: Fix w and Update y
When fixing w and treating it as a constant vector, the objective function about y can be

represented as

min
y

c

2

∥∥ŷ − y
∥∥2
2 ,

s.t. y ∈ {0, 1}|L|×1, yl = 1,∀l ∈ E,

bout ! Tout · y ! b
out

,bin ! Tin · y ! b
in
, (4.31)

jwzhanggy@gmail.com

4.5 Anchor Link Inference with Cardinality Constraint 155

Algorithm 3 Greedy link selection
Require: link estimate result ŷ, parameter k
Ensure: link label vector y
1: initialize link label vector y = 0
2: for l ∈ E do
3: yl = 1
4: end for
5: for l ∈ L \ E and ŷl < 0.5 do
6: yl = 0
7: end for
8: Let L̃ = {l|l ∈ L \ E, ŷl ≥ 0.5}
9: while L̃ 6= ∅ do
10: select l ∈ L̃ with the highest estimation score
11: if add l as positive instance violates the cardinality constraint or more than k links have been selected then
12: yl = 0
13: else
14: yl = 1
15: end if
16: end while
17: return y

Algorithm 4 Cardinality constrained anchor link prediction framework
Require: link feature vector X

weight parameter c
Ensure: parameter vector w, link label vector y
1: Initialize label vector y = 1

2 · 1
2: For links in E , assign their label as 1
3: Initialize parameter vector w = 0
4: Initialize convergence-tag = False
5: while convergence-tag == False do
6: Update vector w with equation w = c(I+ cX*X)−1X*y
7: Calculate link estimation result ŷ = Xw
8: Update vector y with Algorithm Greedy(ŷ)
9: if w and y both converge then
10: convergence-tag = True
11: end if
12: end while

where ŷ = Xw denotes the inference results of the links in L with the updated parameter vector
w from Step 1. The objective function is a constrained non-linear integer programming problem
about variable y. Formally, the above optimization sub-problem is named as the CLS (Cardinality
Constrained Link Selection) problem [43]. The CLS problem is shown to be NP-hard (we will analyze
it in the next subsection), and achieving the optimal solution to it is very time consuming. To preserve
the cardinality constraints on the variables and minimize the loss term, one brute-force way to achieve
the optimal solution y is to enumerate all the feasible combination of links candidates to be selected
as the positive instances, which will lead to very high time complexity. In [43], a greedy link selection
algorithm is proposed to resolve the problem, and the pseudo-code of the greedy link selection method
is available in Algorithm 3. Meanwhile, the framework is illustrated with the pseudo-code available
in Algorithm 4. The framework updates vectors w and y alternatively until both of them converge.

jwzhanggy@gmail.com

156 4 Supervised Network Alignment

4.5.4 Problem and Algorithm Analysis

In this part, we will show the CLS problem with M:N cardinality constraints can be reduced to the
k-maximum weighted matching problem [7], which is NP-hard and not solvable in polynomial time.
In addition, we will also prove that the greedy method can actually achieve a 1

2 -approximation of the
optimal result of the CLS problem.

In the CLS problem, for all the existing links inA+
train, we know their label should be 1 in advance.

For all the links in L \ A+
train with estimation score (i.e., ŷ) lower than 0.5, assigning their label

with value 0 will introduce less loss and has no impact on the cardinality constraints. Therefore, in
Algorithm 3, these links are handled in advance to simplify the problem. For the remaining links,
we need to select those with high scores to assign with label 1 (so as to minimize the loss term),
and preserve the cardinality constraints at the same time. For the links selection of which violate the
cardinality constraints, they will be assigned with label 0 instead.

Formally, we can represent the unlabeled links with confidence scores greater than 0.5 as set L̃ =
{l|l ∈ L \A+

train, ŷl > 0.5}. For all the links in set L̃, the introduced loss term can be represented as

∑

l∈L̃
(ŷl − yl)

2 =
∑

l∈L̃
ŷ2l +

∑

l∈L̃
y2l −

∑

l∈L̃
2ŷl · yl, (4.32)

where term
∑

l∈L̃ ŷ2l is a constant, term
∑

l∈L̃ y2l denotes the number of selected links, and∑
l∈L̃ 2ŷl · yl represents the confidence scores of the selected links. Let’s assume k links are selected

finally, i.e.,
∑

l∈L̃ y2l = k, the optimal k links which can minimize the loss term can be achieved by
maximizing the confidence scores of the selected links:

max
∑

l∈L̃
ŷlyl

s.t. yl ∈ {0, 1},∀l ∈ L̃,
∑

l∈L̃
yl = k,

bout ! Tout · y ! b
out

,bin ! Tin · y ! b
in
. (4.33)

By enumerating different k values in range [1, |L̃|], the optimal link set can be identified for the CLS

problem.

Theorem 4.1 The k-maximum weighted matching problem can be reduced to the above optimization
problem with a general M:N cardinality constraint.

Proof The above optimization problem with 1:1 cardinality constraint is actually identical to the
k-maximum weighted matching problem studied in the existing works [7], and the reduction is trivial.
Meanwhile, for the above optimization problem with N :1 cardinality constraints on the links, we
can have vectors b

in = bin = [1, 1, . . . , 1]*, bout = [N,N, . . . , N]*, and bout = 0. Given the
information network G with 1 : N cardinality constraints, N dummy nodes can be constructed for
each the nodes with out-going links. The constructed dummy nodes are connected to the original
nodes to indicate the belonging relationships. For each original link, e.g., (u, v), a dummy directed
link connecting the dummy node created for u with node v will be added, whose weight is identical
to the weight of the original link (u, v). Given the k-maximum weighted matching result on the

jwzhanggy@gmail.com

4.5 Anchor Link Inference with Cardinality Constraint 157

constructed dummy network, the optimal solution to the above optimization problem on network
G can be obtained by replacing all the created dummy nodes with the original nodes corresponding
to them. Meanwhile, for any solution to the above optimization problem on network G, the solution
to the k-maximum weighted matching problem can be obtained on the constructed dummy network.
In other words, the k-maximum weighted matching problem can be reduced to the above optimization
problem with N :1 cardinality constraints via the constructed dummy network. Meanwhile, for the
networks with general M:N constraint, dummy nodes can be created for both nodes with out-going
links and in-coming links at the same time, whose reduction to the k-maximum weighted matching
problem is not provided due to the limited space. In addition, in the M:N case, to avoid the case that
solutions pick links connecting the more than one link connecting the dummy nodes corresponding
the common node pairs (e.g., both (u′, v′) and (u′′, v′′) are selected, where u′, u′′ and v′, v′′ are the
dummy nodes of u and v, respectively), more constraints will be added to the objective function of
the k-maximum weighted matching problem.

According to the existing works [9], the k-maximum weighted matching problem is actually NP-
hard. To address the problem efficiently, a greedy link selection method is applied as introduced in
the previous subsection. As shown in Algorithm 3, among all the remaining links in L̃, the greedy
link selection method picks the links with the highest confidence scores ŷl . If the selection of a link
doesn’t violate the cardinality constraint, the greedy method will add it to the final result. We will
show that the method can actually achieve a 1

2 -approximation of the optimal result.

Theorem 4.2 The greedy method can achieve a 1
2 -approximation of the optimal solution to the CLS

problem.

Proof Formally, let C be the set of links selected by the greedy method to assign with label +1, while
the optimal solution to the CLS problem can be represented as OPT . Every time, when the method
selects the links with the highest confidence score (e.g., l = (u, v)) to add to C, the degrees of nodes u
and v will get increased by 1 and some other links incident to u, v will no longer get added to C due to
the degree limit (introduced by the cardinality constraint). At most two links incident to u and v can
get removed due to the selection of (u, v), since (u, v) occupies the degree space of u and v by one,
respectively. Formally, the set of links incident to l can be represented as set Γ (l) = Γ out (u)∪Γ in(v).
Depending on whether link l ∈ C is inOPT or not and the number of links in the optimal solution but
are removed in C due to the selection of l (i.e., links in Γ (l)∩ (OPT \ C)), there exist three cases:

1. l ∈ OPT : Link l also belongs to the optimal result, and adding l into C will not affect the selection
of other links.

2. l /∈ OPT and Γ (l) ∩ (OPT \ C) = {l1}: Link l is not in the optimal solution, and adding l to the
result C will occupy the degree space and make the optimal link l1 ∈ OPT (incident to either u or
v) fail to be selected. Meanwhile, since l is the link with the highest score at selection, if l1 is not
selected ahead of l, it is easy to show that ŷl > ŷl1 >

1
2 ŷl1 .

3. l /∈ OPT and Γ (l) ∩ (OPT \ C) = {l1, l2}: Link l is not in the optimal solution, and adding of
l = (u, v) will occupy the degrees of nodes u and v by 1 and make links l1, l2 ∈ OPT incident to
u and v, respectively to be removed. Since l has the highest score, if links l1 and l2 are not selected
ahead of l, it is easy to show that ŷl > ŷl1 and ŷl > ŷl2 . Therefore, we have ŷl >

1
2 (ŷl1 + ŷl2).

jwzhanggy@gmail.com

158 4 Supervised Network Alignment

Based on the above remarks, for all the selected links in C, we have

ŷ(C) = ŷ ((C ∩ OPT) ∪ (C \OPT))

= ŷ(C ∩ OPT)+ ŷ(C \OPT)

= ŷ(C ∩ OPT)+
∑

l∈C\OPT

ŷl

>
1
2
ŷ(OPT ∩ C)+ 1

2

∑

l∈OPT \C
ŷl

= 1
2
ŷ(OPT). (4.34)

where ŷ(C) =∑l∈C ŷl denotes the score sum of the links in C.
Therefore, the greedy anchor link selection algorithm can achieve a 1

2 approximation of the optimal
solution for the CLS problem with M:N link cardinality constraint, and the time complexity of the
greedy method is O(|L̃|).

4.5.5 Distributed Algorithm

Meanwhile, for large-scale networks involving billions of nodes and links, the complete network
data can hardly be stored in one single machine and the learning framework may suffer from the
high computing cost problem a lot. In this section, we will introduce a scalable version of the
ITERCLIPS model introduced before based on distributed computational platforms proposed in [43].
The framework involves two iterative steps actually. In the first step, it updates vector w to calculate
the confidence vector ŷ = Xw = cX(I + cX*X)−1X*y, where matrix cX(I + cX*X)−1X* can
actually be pre-computed and divided into blocks to be stored in different slaves (i.e., worker nodes
in a cluster). For instance, in Spark, the matrix can be divided into rows, where each row can be
saved as an RDD (resilient distributed dataset) in one slave, and each entry in vector ŷ can be updated
independently in different slaves simultaneously. The updated values in ŷ can be exchanged among
the slaves with very low communication costs. Meanwhile, for the second step in framework, how to
generalize the greedy method to the distributed version is not very straightforward, which will be the
focus in the following part of this subsection.

According to Theorem 4.1, the k-maximum weighted matching problem can be reduced to the
objective function of k-CLS with general M:N cardinality constraint in polynomial time. Therefore,
next we will talk about the distributed version of the greedy method for the CLS with 1:1 constraint
specifically (which can be applied for the general M:N cardinality constraint as well). Before diving
into details of the distributed greedy algorithm, we first provide some intuitive ideas about how
the distributed method works. In the distributed weighted link selection, each process representing
one node in the graph knows its neighbor nodes as well as their inferred confidence scores ŷ.
These processes can also communicate with each other by sending and receiving messages. Via
the communication among processes, links with locally highest confidence scores can be identified
concurrently. Intuitively, by running the algorithm on all the nodes simultaneously, the same matching
result can be obtained as the greedy algorithm based on the stand-alone mode.

jwzhanggy@gmail.com

4.5 Anchor Link Inference with Cardinality Constraint 159

Algorithm 5 Distributed Greedy algorithm with 1:1 cardinality constraint
Require: node u, neighbor set Γ (u)
1: Initialize neighborhood set N = Γ (u)
2: Initialize matching candidate set C = ∅
3: Select candidate c = candidate(u,N)
4: if c 6= null then
5: Send 〈invite〉 message to c
6: end if
7: while N 6= ∅ do
8: Receive a message m from neighbor v
9: if m == 〈invite〉 then
10: C = C ∪ {v}
11: end if
12: if m == 〈remove〉 then
13: N = N \ {v}
14: C = C \ {v}
15: if v == c then
16: Select new candidate c = candidate(u,N)
17: if c 6= null then
18: Send 〈invite〉 message to c
19: end if
20: end if
21: end if
22: if c 6= null ∧ c ∈ C then
23: for w ∈ C \ {c} do
24: Send 〈remove〉 message to w
25: end for
26: C = ∅
27: end if
28: end while

Formally, the pseudo-code of the distributed greedy algorithm is available in Algorithm 5.
According to the algorithm, for each node u, its neighbor set N can be initialized as Γ (u) (N will
change dynamically in the algorithm). Function c = candidate(u,N) returns the candidate of u,
whose link with u is of the highest confidence score, i.e.,

c = candidate(u,N) = argv∈N max ŷ(u,v). (4.35)

Initially, node u will send the invite message to the candidate c, and receive messages from all the
neighbors in set N . If the message received from neighbor v is also an invite (i.e., u is the most
promising candidate of v), u will add v to its matching candidate set C. Meanwhile, if the message is
remove, it denotes v has already found its partner and link between them has already been selected.
Node v will be removed from u’s neighbor set and matching candidate set. What’s more, if v happens
to be candidate c, node u will retrieve the next most promising candidate c and send a new invite
message again. Finally, if candidate c invites u and u also invites c, the link between whom will be of
the highest score and selected finally.

Lemma 4.1 In the distributed greedy algorithm, each process (node) sends out at most one message
over each incident edge.

Proof In the algorithm, for each node u, it will send an invite message to the first candidate as
well as other candidate if the previous candidates send a remove message to u. Therefore, for each
potential candidate c obtained via function candidate(u,N), u sends at most one invitemessage to c.

jwzhanggy@gmail.com

160 4 Supervised Network Alignment

Meanwhile, the removemessages are merely sent to the other neighbors inN (excluding candidates c)
only once. In other words, all the neighbors in Γ (u) only receive exactly one message (either invite
or remove) from u in the whole process.

According to the analysis in Lemma 4.1, we can prove the time complexity of the distributed greedy
Algorithm to be O(|L̃|).

4.6 Summary

In this chapter, we focused on the supervised network alignment problem. Based on a set of labeled
anchor links, the supervised network alignment problem aims at learning a mapping to infer the
potential labels of the unlabeled anchor links. To address such a problem, three different supervised
network alignment approaches have been introduced in this chapter, including the full network
alignment method MNA, partial network alignment method PNA, and the general network alignment
method ITERCLIPS with different cardinality constraints.

Based on a detailed data analysis, we illustrated that the heterogeneous information available in
the online social networks can be utilized to extract some useful features for the anchor links across
networks, which include the social connections, textual contents and spatial check-ins and temporal
activity distribution. Based on these features, we introduced theMNA model, which covers two phases:
(1) anchor link classification, and (2) social network matching for anchor link pruning. In MNA, the
studied social networks are assumed to be fully aligned, i.e., all the involved users will be connected by
an anchor link, and the anchor links are assumed to be subject to the one-to-one cardinality constraint.

Instead of studying the network alignment problem based on two specific online social network,
e.g., Foursquare and Twitter, we introduced another general network alignment method PNA. Based on
the heterogeneous information across the social networks, PNA introduces a general feature extraction
approach based on meta path and tensor decomposition. The social networks to be aligned by PNA
are partially aligned instead, where a bunch of the users are the non-anchor users. In other words, the
anchor links are subject to the one-to-one ≤ cardinality constraint instead. To pruning the non-existing
anchor links across the social networks, PNA adopts a generic stable matching algorithm to extract the
final mapping of users across networks.

Finally, in the last section of this chapter, we generalized the cardinality constraint on anchor
links, and introduced the network alignment approach ITERCLIPS. Model ITERCLIPS can handle the
network alignment problem very well, where the cardinality constraint on anchor links can be either
one-to-one, one-to-many, ormany-to-many, respectively. ITERCLIPS models the cardinality constraint
on anchor links as the mathematical constraint on node degrees instead, and addresses the network
alignment problem as an optimization problem. ITERCLIPS adopts a greedy search approach to pick
the anchor links across networks, which can achieve a 1

2 -approximation of the optimal solution.

4.7 Bibliography Notes

In recent years, witnessing the rapid growth of online social networks, researchers start to shift their
attention to align multiple online social networks. Homogeneous network alignment was studied in
[24], enlightened by which the problem of aligning two bipartite networks is studied by Koutra [13],
where a fast alignment algorithm which can be applied to large-scale networks is introduced. Users
can have various types of attribute information in social networks generated by their social activities,

jwzhanggy@gmail.com

4.8 Exercises 161

based on which Zafarani et al. study the cross-network user matching problem in [30]. These proposed
approaches are mostly proposed based on some simple heuristics and assumptions.

The supervised network alignment problem initially proposed in [12] has become one of the
most important research problems in social network studies. By extending the traditional supervised
link prediction approach [1] to the inter-network scenario, Kong et al. [12] introduces a two-phase
approach to address the network alignment via anchor link prediction and network matching. A set of
useful inter-network features extracted for anchor links have also been provided in Kong et al. [12] as
well, which can capture very useful signals about the anchor links.

Supervised partial network alignment is introduced in [38], which allows users to stay isolated
without connections to anchor links in the network alignment process. A detailed description about the
tensor and related tensor decomposition approaches is available in [11]. Class imbalance is a serious
problem in traditional machine learning, and the frequently used techniques proposed to handle such
a problem include both down sampling [14] and over sampling [4]. The readers may refer to these
papers for more information when reading Sect. 4.4.

Graph matching has been an important research problem in graph studies for a very long time,
and Jack Edmonds introduced an efficient algorithm to address the maximum matching problem
based on graphs in [7]. As proposed in the existing works [9], the k-maximum weighted matching
problem is actually NP-hard. The network alignment approach ITERCLIPS with the general cardinality
constraint was initially introduced in [43], which unifies the prediction tasks of links subject to
different cardinality constraints into the one framework.

4.8 Exercises

1. (Easy) Given two partially aligned networks shown in Fig. 4.12, please compute the extended
common neighbor between user pair C(1) and C(2) across the networks, respectively.

2. (Easy) Given two partially aligned networks shown in Fig. 4.12, please compute the extended
Jaccard’s Coefficient between user pair C(1) and C(2) across the networks, respectively.

3. (Easy) Given two partially aligned networks shown in Fig. 4.12, please compute the extended
Adamic/Adar Index between user pair C(1) and C(2) across the networks, respectively.

4. (Easy) Please compute the number of meta path instances connecting BF and DT across the
networks shown in Fig. 4.12 (G(1): Foursquare, G(2): Twitter) based on meta path U(1) →
U(1) → U(1) ←→ U(2) ← U(2).

5. (Easy) Please compute the number of meta path instances connecting BF and ET across the
networks shown in Fig. 4.12 (G(1): Foursquare, G(2): Twitter) based on meta path U(1) →
U(1) → U(1) ←→ U(2) ← U(2) ← U(2).

6. (Medium) Please identify the stable matching of the networks as shown in Fig. 4.13 with
Algorithm 1.

7. (Medium) Please identify the generic stable matching of the networks as shown in Fig. 4.13 with
Algorithm 2 (with K = 1).

8. (Medium) Please identify the greedy matching of the networks subject to one-to-one cardinality
constraint as shown in Fig. 4.13 with the greedy link selectionmethod introduced in Algorithm 3.

9. (Hard) Please try to implement the stable matching algorithm (i.e., Algorithm 1) and the generic
stable matching algorithm (i.e., Algorithm 2) in a programming language you prefer. You can
also input the aligned network structures shown in Fig. 4.13 as the input to test the correctness of
your implementation.

10. (Hard) Please try to implement the greedy link selection algorithm (i.e., Algorithm 3) and use the
networks in Fig. 4.13 to text the implementation correctness.

jwzhanggy@gmail.com

162 4 Supervised Network Alignment

Fig. 4.12 Multiple
aligned social networks
input

friend

friend

friend

friend follow

follow
follow

anchor links

Foursquare Network Twitter Network

A

B

C

D

E

F

A

B

C

E

D

F

Fig. 4.13 Aligned social
networks with inference
confidence scores

Foursquare Network Twitter Network

A

B

C

D

E

F

A

B

C

E

D

0.9

0.7

0.7

0.65

0.6

0.4

0.8

0.9

0.2

0.9
0.7

0.4

jwzhanggy@gmail.com

References 163

References

1. M. Al Hasan, V. Chaoji, S. Salem, M. Zaki, Link prediction using supervised learning, in Workshop on Link
Analysis, Counterterrorism and Security (SDM 06) (2006)

2. M. Bayati, M. Gerritsen, D. Gleich, A. Saberi, Y. Wang, Algorithms for large, sparse network alignment problems,
in 2009 Ninth IEEE International Conference on Data Mining (2009)

3. I. Bhattacharya, L. Getoor, Collective entity resolution in relational data. ACM Trans. Knowl. Discov. Data 1(1), 5
(2007)

4. N. Chawla, K. Bowyer, L. Hall, P. Kegelmeyer, Smote: synthetic minority over-sampling technique. J. Artif. Int.
Res. 16, 321–357 (2002)

5. L. Dubins, D. Freedman, Machiavelli and the Gale-Shapley algorithm. Am. Math. Mon. 88(7), 485–494 (1981)
6. M. Duggan, A. Smith, Social media update 2013 (2013). Report available at http://www.pewinternet.org/2013/12/

30/social-media-update-2013/
7. J. Edmonds, Maximum matching and a polyhedron with 0, 1 vertices. J. Res. Natl. Bur. Stand. 69(125–130), 55–56

(1965)
8. J. Euzenat, P. Shvaiko, Ontology Matching (Springer, Secaucus, 2007)
9. M. Garey, D. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness (W. H. Freeman

& Co., New York, 1990)
10. D. Kempe, J. Kleinberg, É. Tardos, Maximizing the spread of influence through a social network, in Proceedings of

the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’03) (2003)
11. T. Kolda, B. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
12. X. Kong, J. Zhang, P. Yu, Inferring anchor links across multiple heterogeneous social networks, in Proceedings of

the 22nd ACM International Conference on Information & Knowledge Management (CIKM ’13) (2013)
13. D. Koutra, H. Tong, D. Lubensky, Big-align: fast bipartite graph alignment, in 2013 IEEE 13th International

Conference on Data Mining (2013)
14. M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, in Proceedings of the

Fourteenth International Conference on Machine Learning (1997)
15. R. Lichtenwalter, J. Lussier, N. Chawla, New perspectives and methods in link prediction, in Proceedings of the

16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’10) (2010)
16. MarketingCharts, Majority of twitter users also use Instagram (2014). Report available at http://www.

marketingcharts.com/wp/online/majority-of-twitter-users-also-use-instagram-38941/
17. A. Menon, C. Elkan, Link prediction via matrix factorization, in Machine Learning and Knowledge Discovery in

Databases (ECML PKDD 2011) (2011)
18. S. Moghaddam, M. Jamali, M. Ester, ETF: extended tensor factorization model for personalizing prediction of

review helpfulness, in Proceedings of the Fifth ACM International Conference on Web Search and Data Mining
(WSDM ’12) (2012)

19. O. Peled, M. Fire, L. Rokach, Y. Elovici, Entity matching in online social networks, in 2013 International
Conference on Social Computing (2013)

20. Y. Sun, R. Barber, M. Gupta, C. Aggarwal, J. Han, Co-author relationship prediction in heterogeneous bibliographic
networks, in 2011 International Conference on Advances in Social Networks Analysis and Mining (2011)

21. Y. Sun, J. Han, C. Aggarwal, N. Chawla, When will it happen?: relationship prediction in heterogeneous
information networks, in Proceedings of the 5th ACM International Conference on Web Search and Data Mining
(WSDM 2012) (2012)

22. J. Tang, H. Gao, X. Hu, H. Liu, Exploiting homophily effect for trust prediction, in Proceedings of the Sixth ACM
International Conference on Web Search and Data Mining (WSDM ’13) (2013)

23. I. Tomek, Two modifications of CNN, IEEE Trans. Syst. Man Cybern. 6, 769–772 (1976)
24. S. Umeyama, An eigendecomposition approach to weighted graph matching problems, IEEE Trans. Pattern Anal.

Mach. Intell. 10(5), 695–703 (1988)
25. Z. Wang, J. Liao, Q. Cao, H. Qi, Z. Wang, Friendbook: a semantic-based friend recommendation system for social

networks. IEEE Trans. Mob. Comput. 14(3), 538–551 (2015)
26. X. Xie, Potential friend recommendation in online social network, in 2010 IEEE/ACM International Conference

on Green Computing and Communications International Conference on Cyber, Physical and Social Computing
(2010)

27. J. Yang, J. McAuley, J. Leskovec, Community detection in networks with node attributes, CoRR, abs/1401.7267
(2014)

28. J. Ye, H. Cheng, Z. Zhu, M. Chen, Predicting positive and negative links in signed social networks by transfer
learning, in Proceedings of the 22nd International Conference on World Wide Web (WWW ’13) (2013)

jwzhanggy@gmail.com

http://www.pewinternet.org/2013/12/30/social-media-update-2013/
http://www.pewinternet.org/2013/12/30/social-media-update-2013/
http://www.marketingcharts.com/wp/online/majority-of-twitter-users-also-use-instagram-38941/
http://www.marketingcharts.com/wp/online/majority-of-twitter-users-also-use-instagram-38941/

164 4 Supervised Network Alignment

29. B. Zadrozny, C. Elkan, Transforming classifier scores into accurate multiclass probability estimates, in Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’02)
(2002)

30. R. Zafarani, H. Liu, Connecting users across social media sites: a behavioral-modeling approach, in Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’13) (2013)

31. J. Zhang, Social network fusion and mining: a survey (2018). arXiv preprint. arXiv:1804.09874
32. J. Zhang, P. Yu, Community detection for emerging networks, in Proceedings of the 2015 SIAM International

Conference on Data Mining (2015)
33. J. Zhang, P. Yu, Multiple anonymized social networks alignment, in 2015 IEEE International Conference on Data

Mining (2015)
34. J. Zhang, P. Yu, PCT: partial co-alignment of social networks, in Proceedings of the 25th International Conference

on World Wide Web (WWW ’16) (2016)
35. J. Zhang, X. Kong, P. Yu, Predicting social links for new users across aligned heterogeneous social networks, in

2013 IEEE 13th International Conference on Data Mining (2013)
36. J. Zhang, X. Kong, P. Yu, Transferring heterogeneous links across location-based social networks, in Proceedings

of the 7th ACM International Conference on Web Search and Data Mining (WSDM ’14) (2014)
37. J. Zhang, P. Yu, Z. Zhou, Meta-path based multi-network collective link prediction, in Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’14) (2014)
38. J. Zhang, W. Shao, S. Wang, X. Kong, P. Yu, Pna: partial network alignment with generic stable matching, in 2015

IEEE International Conference on Information Reuse and Integration (2015)
39. J. Zhang, S. Wang, Q. Zhan, P. Yu, Intertwined viral marketing in social networks, in 2016 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2016)
40. J. Zhang, P. Yu, Y. Lv, Q. Zhan, Information diffusion at workplace, in Proceedings of the 25th ACM International

on Conference on Information and Knowledge Management (CIKM ’16) (2016)
41. J. Zhang, Q. Zhan, P. Yu, Concurrent alignment of multiple anonymized social networks with generic stable

matching, in Information Reuse and Integration (2016)
42. J. Zhang, C. Aggarwal, P. Yu, Rumor initiator detection in infected signed networks, in 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS) (2017)
43. J. Zhang, J. Chen, J. Zhu, Y. Chang, P. Yu, Link prediction with cardinality constraints, in Proceedings of the Tenth

ACM International Conference on Web Search and Data Mining (WSDM ’17) (2017)

jwzhanggy@gmail.com

