
3Social Network Overview

3.1 Overview

Online social networks (OSNs) denote the online platforms that are used by people to build social
connections with the other people, who may share similar personal or career interests, backgrounds,
or real-life connections. Online social networking sites vary a lot and there exist a large number
of online social sites of different categories, includingonline sharing sites, online publishing sites,
online networking sites, online messaging sitesand online collaborating sites. Each category of
these online social networks can provide speciÞc featured services for the customers. For instance,
Facebook allows users to socialize with each other via making friends, posting text, sharing photos and
videos; Twitter focuses on providing micro-blogging services for users to write/read the latest news
and messages; Foursquare is a location-based social network offering location-oriented services; and
Instagram is a photo and video sharing social site among friends or to the public. To enjoy different
kinds of social network services simultaneously, users nowadays are usually involved in multiple
online social sites at the same time, in each of which they will all form social connections and generate
social information.

Generally, online social networks can be represented as graphs in mathematics. Besides the
users, there usually exist many other types of information entities, like posts, photos, videos,
and comments, generated by usersÕ online social activities. Information entities in online social
networks are extensively connected, and the connections among different types of nodes usually have
different physical meanings. The diverse nodes and connections render online social network to be
a very complex graph structure. Meanwhile, depending on the categories of information entities and
connections involved, the online social networks can be divided into different types, likehomogeneous
network[48], bipartite network[65], andheterogeneous network[51]. To model the phenomenon that
users are involved in multiple networks, a new concept called Òmultiple aligned heterogeneous social
networksÓ [29,71Ð73] has been proposed in recent years.

Different online social networks are usually of different characteristics, which can be quantiÞed
with some network measures formally. Users in online social networks can have different numbers
of connections, which can be quantiÞed as the usernode degree[2, 8] mathematically. User nodes
of a larger degree will be more important (in terms of social connections) generally. A more formal
concept indicating the node importance is called thenode centrality[11], which can be quantiÞed
with many different measures. Connections are very important for online social networks, and node
connection measures quantifying the linking behaviors of nodes in the networks are of great interests.
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78 3 Social Network Overview

Based on the connections among nodes, the social closeness measures between pairs of nodes can
be calculated, where user nodes who frequently interact with each other will have a larger closeness
score. As to the local social connection patters, they may also follow the social balance theory, e.g.,
Òfriends of my friend are my friends.Ó

For the networks with simple structures, like the homogeneous networks merely involving users
and friendship links, the social patterns are usually easy to study. However, for the networks with
complex structures, like the heterogeneous networks, the nodes can be connected by different types of
links sequentially, which are of different physical meanings. One general technique for heterogeneous
network studies is Òmeta pathÓ [53,73], which speciÞcally depicts certain link sequences connecting
the nodes based on the network schema. The meta path concept can also be extended to themultiple
aligned social networkscenario [29,73], which can connect the nodes across different social networks.
The machine learning approaches introduced in the previous chapter are very general learning models,
which take the feature representation data as the input and output the predicted labels of the data
instances. There actually also exist some learning algorithms proposed for the network structured
data speciÞcally, like therandom walkapproach [36].

In this chapter, we will provide the deÞnitions of some important concepts that are useful for the
social network studies, including the basic graph related concepts, and some advanced social network
concepts, likemeta path[53, 73]. A clear categorization of the network types will be provided, and
some network measures will be introduced to illustrate the properties of the networks. Finally, an
introduction about some network-based models will be provided. These concepts, network categories,
network measures, and approaches will be frequently used and mentioned in the following chapters
of this book.

3.2 Graph Essentials

In mathematics and computer science, the online social networks are generally represented as
graphs [60], where the information entities are denoted as the nodes and the connections among
the information entities are represented as the links. In this section, we will provide some basic
introductory knowledge about graph, including its representations and the connectivity properties.

3.2.1 Graph Representations

Graphs can be represented in different forms, like a traditional graph deÞnition involving nodes and
links, anadjacency matrixindicating the connectivity among nodes,adjacency listandlink list.

DeÞnition 3.1 (Graph) Formally, a graph can be represented asG = (V, E), whereV denotes the
set of nodes andE represents the set of links in the graphG.

Generally, node is the basic entity unit in graphs, which can represent different types of information
entities when using the graph deÞnition to represent social networks. For instance, in online social
networks, a node can denote a user, a post, a comment, and a photo. The formal representation of the
node setV can be denoted as

V = { v1, v2, . . . , vn}, (3.1)
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3.2 Graph Essentials 79

wherevi (1 ! i ! n) represents a single node in the graph and the node set size (i.e., the size of the
graph) is|V| = n.

Meanwhile, the different kinds of connections among the information entities are represented
as the links in the graphs, which bear various physical meanings. For instance, in online social
networks, the links among users can denote their friend/follow relationships, the links between users
and posts denote the post-writing action, and the links between posts and spatial Ò(latitude, longitude)Ó
coordinate pairs denote the check-ins attached to the posts. Formally, the set of links in the network
can be represented as

E = { e1, e2, . . . , em}, (3.2)

whereej = (vo, vp ) (1 ! j ! m) denotes a link/node pair in the graph. The size of the link set in the
network can be represented as|E| = m.

Besides the aforementioned regular graph deÞnition, a graph can also be represented as an
adjacency matrix, which indicates the connectivity among the nodes.

DeÞnition 3.2 (Adjacency Matrix) Given a graphG = (V, E), we can represent its corresponding
adjacency matrix as a binary matrixA = { 0, 1}n" n, where the rows and columns of the matrix
correspond to the nodes inG and entryA(i, j ) = 1 iff link (vi , vj ) # E.

The graph deÞnition and its adjacency matrix representation actually have equivalent representation
capacity, and the transformation between which can be achieved very easily. Various properties of the
graphs can also be revealed by their adjacency matrices as well. For instance, if a graph has a very
small number of connections compared with the number of nodes in it, the corresponding adjacency
matrix of the graph will be very sparse [43]. Meanwhile, if the nodes in the graph actually form
several communities where the nodes in each community tend to have dense connections compared
with those outside the communities, the corresponding graph adjacency matrix will have a lower rank
[47].

Besides theadjacency matrix, the other graph representations include adjacency list. Let set
! (u i ) = { uj |uj # V, (ui , uj ) # E} $ V denote the neighbors that userui connects to. The adjacency
list representation of graphG can be represented as{(ui , ! (u i ))}ui #V .

Example 3.1For instance, given a graph illustrated in Fig.3.1a, we can represent the graph as

G = (V, E), (3.3)
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Fig. 3.1 An example of different graph representations. ((a) Graph; (b) adjacency matrix; (c) adjacency list)
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80 3 Social Network Overview

where the node setV = { n1, n2, n3, n4, n5} contains Þve nodes and the link setE =
{(n1, n2), (n1, n3), (n1, n4), (n2, n3), (n2, n5), (n3, n5), (n4, n5)} covers seven links. In the graph,
there are Þve different nodes{n1, n2, n3, n4, n5}, where they are connected by seven links. In the
graph, all the nodes are connected with three other nodes, exceptn4 which is connected ton1 andn5

only. We show its adjacency matrix and adjacency list representations in Fig.3.1b, c, respectively. For
any connected node pairs in the graph, the corresponding entry in the matrix will be Þlled with value
1; otherwise they have value 0 instead. For instance, link(n2, n3) connects nodesn2 andn3. In the
adjacency matrix, the(2nd, 3rd) entry and the(3rd, 2nd) are both Þlled with value 1. The graph is
also represented as an adjacency list as shown in Fig.3.1c. For each node in the graph, we provide a
list of nodes connected with the nodes. For instance, noden3 is connected with nodesn1, n2, andn5

simultaneously, which will form the adjacency list of noden3.

3.2.2 Connectivity in Graphs

Connectivity[8] is an important property of graphs, where nodes are connected with each other via
either direct connections or paths consisting of a sequence of links. Formally, given a graphG and
a noden in the graph, the set of nodes that are adjacent ton in the graph are called theadjacent
neighborsof n in the graphG.

DeÞnition 3.3 (Adjacent Neighbor) Given a graphG = (V, E), theadjacent neighborsof noden
in G can be represented as! (n) = { n%|n%# V & (n, n%) # E}.

Adjacent neighborset is an important concept in social network studies. For instance, given a social
network, theadjacent neighborset of a user denote the online friends that the user is connected to,
which is very useful for analyzing the socialization patterns and preference of users in the social
network.

Meanwhile, given a noden in a networkG, we can call the set of links incident ton in the graph
as theincident linksof noden.

DeÞnition 3.4 (Incident Link) Given a graphG = (V, E) and a noden # V, the set ofincident link
set ofn in G can be represented as"(n) = { e|e # E & ' n%# V, (n, n %) = e}.

Furthermore, we can also deÞne theincident relationshipsbetween two links. Formally, given two
links (a, b) and(c, d) in graphG, (a, b) is said to be incident to(c, d) iff a = c ( a = d ( b = c (
b = d, i.e., they share a common node. Based on this deÞnition, we can deÞne the concepts ofwalk,
path, trail , tour, andcycleof graphG as follows:

¥ Walk : Formally, awalk can be denoted as a sequence of nodesn1, n2, . . . , nk from setV, where
there exists a link between any sequential pairs of nodes in the graph. For any three sequential
nodes in the sequence, e.g.,ni , ni + 1, ni + 2, the links(ni , ni + 1) and (ni + 1, ni + 2) are incident to
each other sharing a common nodeni + 1. Furthermore, if the ending nodenk is the same as the
starting noden1 in the walk, then it will be called aclosed walk; otherwise, it is called anopen
walk. The length of the walk is formally deÞned as the number of links involved in the walk. For
instance, sequencen1, n2, . . . , nk forms a walk of lengthk ) 1.

¥ Trail : A trail denotes awalk in the graphG, where all the links are distinct. By traveling along
a trail , each link in thetrail can be visited once, but the nodes can be visited multiple times. The
shortesttrail in graphG can be just one link in the graph.
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3.2 Graph Essentials 81

¥ Tour : A closed trail(i.e., the starting and ending nodes of thetrail are the same) is called atour.
¥ Path: Given awalk in the graphG, if all the nodes and links in thewalk are distinct, thewalk will

be apathin the graph. Apathis also atrail in the graph.
¥ Cycle: A closed pathis deÞned as acyclein graphs. Acycleis also a special type oftour.

To help explain the above concepts, we also provide an example as follows, which lists thewalk,
trail , tour, path, andcycleinstances from the input graph.

Example 3.2For instance, based on the graph illustrated in Fig.3.2, the node sequences

1. Òn1, n2, n3, n5, n4, n1, n2Ó is awalk of length 6,
2. Òn1, n2, n3, n1, n4Ó is atrail of length 4,
3. Òn1, n2, n5, n4, n1Ó is atour of length 4,
4. Òn1, n3, n5, n2Ó is apathof length 3,
5. Òn1, n2, n3, n5, n4, n1Ó is acycleof length 5

in the graph, respectively.

The above concepts can help correlate the nodes in the graphs which are not directly connected
with each other.

DeÞnition 3.5 (Reachable)Formally, given two nodesni andnj in the graphG, ni is said to be
reachablefrom nj iff there is apathfrom nj to ni .

For a subset of nodes, which arereachablefrom each other, they together with the links among
them will form aconnected componentin the graph.

DeÞnition 3.6 (Connected Component)Given a graphG = (V, E), the subgraphG%= (V%, E%) is
said to be a connected component ofG iff V%$ V, E%$ E, and for any pair of nodes inV%they are
reachablevia the links inE%.

Example 3.3For instance, based on the input graph illustrated in Fig.3.2, the subgraphG% =
({n1, n2, n4, n5}, {(n1, n2), (n2, n5), (n4, n5), (n1, n4)}) will be a connected componentof the input
graph. Meanwhile, considering that all the nodes in the network arereachableto each other, and the
original network itself is also aconnected componentactually.

Fig. 3.2 An input graph
example
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82 3 Social Network Overview

Based on the graph linksE, there may exist multiplepathsof different lengths connecting a certain
pair of nodes (e.g.,ni , nj ). Meanwhile, thepathof the shortest length can be of great importance and
has concrete applications in many research problems, liketrafÞc route planning[6]. Formally, such a
pathis also named as theshortest pathin graphs.

DeÞnition 3.7 (Shortest Path)Given a pair of nodesni , nj # V in the graphG, the set ofpaths
connectingni andnj based onG can be represented asP, in which one of the shortest lengths is
called theshortest pathbetweenni andnj :

SP (ni , nj ) = min
p#P

|p|, (3.4)

where|p| denotes the length of pathp.

The shortest pathbetween different node pairs in a graph can be of different lengths, where the
longestshortest pathbetween nodes in graphG is also deÞned as thediameterof the graph.

DeÞnition 3.8 (Graph Diameter) Formally, given a graphG, the diameter of graph G can be
represented as

Diameter(G) = max
ni ,nj #V

SP (ni , nj ). (3.5)

Example 3.4For instance, based on the graph illustrated in Fig.3.2, the shortest pathbetween (1)
nodesn1 andn2 is Òn1 * n2Ó (of length 1), and (2) nodesn2 andn4 is Òn2 * n5 * n4Ó of length 2
(or Òn2 * n1 * n4Ó). For any two nodes selected from the graph, we observe that theshortest path
length between them are no greater than 2, i.e., thediameterof the graph is 2.

3.3 Network Measures

The networks are usually of different structures and will have different properties, which can be
indicated by various measures about either the nodes, links, or the overall network structure. In this
part, we will introduce a number of measures about the networks, including thedegree[2, 8] and
centrality [11] about nodes,similarity [67] about node pairs (i.e., the links), and thetransitivity [19]
andsocial balance[20,57] about the network structures.

3.3.1 Degree

Degree[2, 8] can effectively indicate the number of connections associated with nodes in graphs,
which is a very important node measure. In this part, we will introduce thenode degreeconcept and
thenode degree distribution[2] in graphs.

3.3.1.1 Node Degree
Given an undirected networkG = (V, E), the node degree denotes the number of edges incident to
the nodes, whose formal deÞnition is provided as follows.
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3.3 Network Measures 83

DeÞnition 3.9 (Degree)The degreeof nodeu in an undirected networkG = (V, E) denotes the
number of links incident to it, i.e.,d(u) = |{ (u, v) |v # V, (u, v) # E}|.

In an undirected network, each link will be incident to two nodes, and the total node degree of a
network will always be an even number. Furthermore, as to the speciÞc numbers of the degrees, we
have the following theorem.

Theorem 3.1 Given an undirected networkG = (V, E), the total number of node degrees equal to
twice the number of links in the network, i.e.,

!

u#V

d(u) = 2|E|. (3.6)

Proof In networkG, the total node degree can be represented as
"

u#V d(u). The removal of link
(u, v) # E, will lower down the degree of nodesu andv by 1, respectively. The total node degree
after removing link(u, v) will be equal to

"
u#V d(u) ) 2. After removing all the links (i.e.,|E| links)

from the network, the total node degree will be reduced to 0 as all the nodes are isolated without any
connections. Therefore,

"
u#V d(u) ) 2|E| = 0, and we have

!

u#V

d(u) = 2|E|. (3.7)

In the case that links in the networks are directed, the node degree concept will be further reÞned
into node in-degreedin andnode out-degreedout, which denotes the number of links coming into the
nodes and those going out from the nodes, respectively.

Theorem 3.2 Given a directed networkG = (V, E), the total number of node in-degree and out-
degree are both equal to the number of nodes in the network, i.e.,

!

u#V

din (u) =
!

u#V

dout(u) = | E|. (3.8)

Proof Similarly, we can represent the total node in-degree and out-degree of networkG as"
u#V din (u) and

"
u#V dout(u), respectively. From networkG, the removal of each link(u, v) # E

will decrease the out-degree ofu and in-degree ofv by 1. Therefore, after the removal of link
(u, v) , the new total node in-degree and out-degree of networkG will be

"
u#V din (u) ) 1 and"

u#V dout(u) ) 1, respectively. After removing all the links inE, the node in-degree and out-degree
will be decreased to 0, and all the nodes will become isolated without any connections. In other words,
we have

"
u#V din (u) ) | E| =

"
u#V dout(u) ) | E| = 0, which implies that

!

u#V

din (u) =
!

u#V

dout(u) = | E|. (3.9)
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3.3.1.2 Degree Distribution
Node degree is an important property about the nodes, while the distribution of the node degrees
displays an important property of the whole network instead. Given a node degree valued, we can
represent the proportion of nodes with degreed as

P (d) =
|{v|v # V, d(v) = d}|

|V|
, (3.10)

where the numerator denotes the number of nodes with degreed.
All the potential degree values of nodes in the network can be represented as setD = { d(u)|+u #

V}. Therefore, the node degrees together with the corresponding proportions will be represented as a
tuple set{(d, P (d))}d#D , which can be represented as a distribution plot with degrees as thex axis
and the proportions as they axis.

Example 3.5For instance, given an undirected network shown in Fig.3.2, there exist Þve nodes
n1, n2, n3, n4, n5 with degrees 3, 3, 3, 2, 3, respectively. Therefore, the node degree and proportion

tuples can be represented as
#$

2, 1
5

%
,
$
3, 4

5

%&
. We can represent the degree distribution in Fig.3.3,

where majority of the nodes have degree 3 (the largest node degree in the network) and a small
proportion of nodes have degree 2 (the smallest node degree in the network).

Such a degree distribution about the toy example shown in Fig.3.3is not common in the real-world
social networks. In many of the cases, most of the users are regular users with a limited number of
friends online (i.e., a small degree), and a small number of celebrities can have a large number of
friends (i.e., a large degree).

Example 3.6In Fig.3.4, we show the degree distribution plots of two crawled data sets about the
Foursquare and Twitter online social networks, where each of them contains about 5000 users.
According to the plots, we observe that the user fraction generally drops as the node degree increases
in both Foursquare and Twitter. Among all the users, most of the users in both Foursquare and Twitter
have a very small degree (less than 10). Compared with Foursquare, users in Twitter have more dense
connections and tend to have larger degrees. For instance, the fraction of users with small degrees in
Twitter is less than that in Foursquare (i.e., the red dots are below the blue dots for small degrees),
while the Twitter user fractions of larger degrees are above those of Foursquare (i.e., the right part of
the plot). According to the plot, there also exists one user in the Twitter network with a degree greater

Fig. 3.3 Degree
distribution of the example
network
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Fig. 3.4 Degree
distribution of the
Foursquare and Twitter
networks

than 1000, i.e., the rightmost red dot, whose is usually a celebrity with a great number of followers in
the networks.

3.3.2 Centrality

The conceptcentrality [11] deÞnes how important a node is in the network. To quantify the node
importance in the networks, different kinds of metrics can be applied to deÞne the nodecentrality,
which will be introduced in this part.

3.3.2.1 Degree Centrality
In the real-world online social networks, the users with lots of connections (i.e., large degrees) tend to
be important, as their roles are recognized by other users via the connections with them. Therefore, the
node importance can be quantiÞed as the node degrees. Given an undirected networkG, thedegree-
based centrality[11,65] of a nodeu in the network can be deÞned as

Cd(u) = d(u). (3.11)

All the nodes inG can be ordered by theirdegree-based centrality, where the nodes with larger
degrees will be more important compared with other nodes with smaller degrees. Meanwhile, given
a directed networkG, the node centrality can be deÞned as either their in-degrees, out-degrees, or
in-degrees together with out-degrees, which can be formally represented as follows:

Cin(u) = din (u), (3.12)

Cout(u) = dout(u), (3.13)

Cin/out (u) = din (u) + dout(u). (3.14)

Example 3.7For instance in Fig.3.5, we show a graph with Þve nodes and Þve undirected links.
Based on thedegree centrality, among all the nodes in the graph, noden1 has the largest centrality
score, i.e., 3, compared with the remaining nodes. Noden3 has the smallest centrality score, i.e., 1,
and the remaining nodes all have a centrality score of 2.
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Fig. 3.5 An input graph
example

n1

n2

n3

n4

n5

3.3.2.2 Normalized Degree Centrality
Generally, thedegree-based centralityin different networks is usually of different scale. For example,
the Facebook network is of a much larger scale compared with other social networks, like Twitter and
Foursquare, and thedegree-based centralityin Facebook is usually much larger than that in Twitter
and Foursquare. To ensure the comparability of thedegree-based centralityacross different networks,
one method is to normalize all the centrality measures to a common value interval. Here, different
numbers can be used as the denominator for centrality rescaling, e.g., themaximal degree, sum degree,
andmaximum degree, which will bring about differentnormalized degree centralitymeasures.

The maximal number of nodes each node can be connected within a network is|V| ) 1, which
can be applied to rescale thedegree centralityto the range[0, 1]. It actually helps deÞne themaximal
degree-based normalized degree centrality:

Cmax(u) =
C(u)

|V| ) 1
. (3.15)

Another way to do the normalization will be to deÞne the centrality as the ratio of the degrees with
regard to the total degree in the networks, i.e., thesum degree-based normalized degree centrality:

Csum(u) =
C(u)

"
v#V d(v)

=
C(u)

2 " | E|
. (3.16)

Generally, in the online social networks, few nodes can achieve a degree with values|V| ) 1 or
2 " | E|. In other words, these two normalized node degree centrality measure values are highly to be
concentrated in a very narrow region[0, #] (# < 1 and can be a very small number), where the#
will also be different for different online social networks and violate the comparability objective. To
resolve such a problem, we propose to normalize the measures with maximum node degree instead,
which deÞnes themaximum degree-based normalized degree centrality:

Cmaximum(u) =
C(u)

maxv#V d(v)
. (3.17)

3.3.2.3 Eigen-Centrality
In the degree centralitydeÞnition, the users having more friends are assumed to be more important
by default. However, in the real world, it can be not the case. Instead of having lots of online friends,
users having more important friends will be more important. In other words, the usersÕcentrality is
determined by their online friendsÕcentrality[46], i.e.,

!"#$%&''()'*%+,-./*



3.3 Network Measures 87

C(u) =
1
$

!

v#! (u)

C(v), (3.18)

where set! (u) = { v|v # V & (u, v) # E} denotes the set of online neighbors of useru in the network
G and$ is a constant scalar.

By organizing the social connections among users in the network as the social adjacency matrix
A # {0, 1}|V|"| V|, we can rewrite the above equation as follows:

$c = A, c, (3.19)

where vectorc = [ C(u1), C(u2), . . . , C(u |V|)], contains all the centrality values of users in the
network.

The above equation indicates that the centrality vector is actually a eigenvector of the social
adjacency matrixA, , whose corresponding eigenvalue is$. However, given a matrixA, , it will
have multiple eigenvectors and eigenvalues. Usually, we prefer to use the positive values to deÞne
the centrality measure. According to the PerronÐFrobenius theorem [42], given a matrix, there always
exists a non-negative eigenvector of the matrix, which corresponds to the largest eigenvalue ofA.
Therefore, we will use the eigenvector corresponding to the largest eigenvalue of matrixA, to deÞne
theeigen-centrality[11,46].

Example 3.8For example, given an undirected graph shown in Fig.3.6a, we can represent the

adjacency matrix of the undirected input graph asA =

'

(
(
(
(
)

0, 1, 1, 1, 0
1, 0, 1, 0, 1
1, 1, 0, 0, 1
1, 0, 0, 0, 1
0, 1, 1, 1, 0

*

+
+
+
+
,

. By decomposing the matrix,

we can achieve the eigenvalues of matrixA to be[2.856, ) 2.177, 1.429" 10) 16, 0.322, ) 1.0]. Its
largest eigenvalue is 2.856, and the corresponding eigenvector can be represented as

c =

'

(
(
(
(
)

0.456
0.491
0.491
0.319
0.456

*

+
+
+
+
,

, (3.20)

which denotes thecentrality scoresachieved by the nodes in the graph.

Fig. 3.6 A directed input
graph example. (a)
Undirected graph, (b)
directed graph n1

n2

n3

n4

n5
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n5

n2

n3

A B
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In other words, nodesn2 andn3 actually have the largest centrality score among all the nodes in
the graph, which is 0.491; the next group will be nodesn1 andn5 with a centrality score 0.456; and
noden4 has the lowest centrality score, which is 0.319.

Example 3.9In Fig.3.6b, we show an example of a directed input graph with different connections.

According to the graph structure, we can represent the graph adjacency matrix asA =

'

(
(
(
(
)

0, 0, 1, 1, 0
1, 0, 1, 1, 1
0, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 1, 0

*

+
+
+
+
,

.

By decomposing the matrix, we can achieve its eigenvalues to be 0 for all the nodes in the graph, which
may make theeigen-centralityfail to work in handling the directed graphs.

3.3.2.4 Katz Centrality
As shown in the previous example, when the networks are directed, theeigen-centralitymeasure may
suffer from some serious problems. To overcome such a problem, a new centrality measure, theKatz
centrality[11], has been proposed, which is deÞned as follows:

c = # áA, c + %á1, (3.21)

where parameters# and%denote the weights of theeigen-centralityand the bias term, respectively.
In the case that matrixI ) # áA, is invertible, theKatz centralityvector can be formally represented as

c = %á(I ) # áA, )) 1 á1. (3.22)

To ensure the invertibility of matrixI ) # áA, , the choice of parameter# can be a little bit tricky.
Smaller# tends to unify theKatz centralityof all the nodes in the network closer to the value of%,
while larger# will reduce the effectiveness of the bias term. In practice,# < 1

$max
is usually selected,

where$max denotes the maximum eigenvalue of matrixA, .

Example 3.10For instance, given the directed graph shown in Fig.3.6b, by assigning the parameters
# = %= 0.5, we have theKatz centralityvector as follows:

c =

'

(
(
(
(
)

1.0
1.875
0.5
0.5
0.75

*

+
+
+
+
,

, (3.23)

among which noden2 has the largestKatz centrality(i.e., 1.875) in the input graph.

3.3.2.5 PageRank Centrality
Both eigen centralityand Katz centrality treat all the neighbor nodes in graphs equally when
calculating the centrality scores for the target node. However, in the real world, the impacts of the
neighbor nodes are usually different in determining usersÕ centrality score. For example, in online
social networks, users like to get connected with celebrities, and these celebrities will be connected
with lots of people even though they may not necessary know each other in person. Usually, the
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3.3 Network Measures 89

celebrities are very important users in online social networks, and they have a largecentralityscore
compared against the other users. However, for the users who are connected with these celebrities,
we cannot say that they are also important as well. To consider such a phenomenon, a pagerank-
based centrality measure has been introduced to provide different neighbors with different weights
(determined by their degrees). Formally, thepagerank centrality[12] of useru can be deÞned as

Cp(u) = # á
!

v#! (u)

Cp(v)
|! (v) |

+ %, (3.24)

where the effects fromuÕs neighbors, likev # ! (u) , are weighted by 1
|! (v) | . Here, the subscriptp

denotes thepagerank-basedcentralityscore.
In other words, for the neighbors with large degrees, their impacts onu will be penalized in the

centralityscore computation, while people with a small degree will have a greater impact onu instead.
Formally, the above equation can be rewritten as follows:

c = # áA, D) 1c + %á1, (3.25)

where matrixD = diag(dout(u1), dout(u2), . . . , dout(u|V|)) is a diagonal matrix with the node out-
degrees on its diagonal. In the case that matricesD and(I ) #A, D) 1) are both invertible, we can
have thepagerank centralityvector to be

c = %á(I ) # áA, D) 1)) 1 á1. (3.26)

Parameter# can be selected with similar methods as introduced after Eq. (3.22).

Example 3.11For example, we can take the directed graph shown in Fig.3.7as the input graph, and
its adjacency matrixtogether with theout-degreediagonal matrix can be represented as

A =

'

(
(
(
(
)

0, 0, 1, 1, 0
1, 0, 1, 1, 1
0, 0, 0, 0, 1
0, 0, 1, 0, 0
0, 0, 0, 1, 0

*

+
+
+
+
,

, D =

'

(
(
(
(
)

2, 0, 0, 0, 0
0, 4, 0, 0, 0
0, 0, 1, 0, 0
0, 0, 0, 1, 0
0, 0, 0, 0, 1

*

+
+
+
+
,

. (3.27)

Fig. 3.7 An input graph
for pagerank centrality
calculation n1

n2

n3

n4

n5
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90 3 Social Network Overview

By assigning# = %= 0.5, we can compute thepagerank centralityscores of nodes in the graph to be

c = %á(I ) # áA, D) 1)) 1 á1 =

'

(
(
(
(
)

0.563
0.5

1.406
1.969
0.563

*

+
+
+
+
,

. (3.28)

Among all the nodes,n4 has the largestpagerank centralityscore compared against the other nodes,
andn2 has the lowestpagerank centralityscore on the other hand.

3.3.2.6 Betweenness Centrality
The centrality measures aforementioned are mostly deÞned based on the neighborhood information
for the nodes. Another way to deÞne the centrality measure is based on their positions connecting
nodes in the networks, which is called the nodebetweenness centrality[11,16] measure. Generally, if
a nodeu effectively joins the connection paths among nodes in the network, then its position will be
more important. Formally, thebetweenness centralitymeasure of nodeu can be deÞned as

Cb(u) =
!

s,t#V,s-= t-= v

|Ps,t(u)|
|Ps,t|

, (3.29)

wherePs,t(u) denotes the set ofshortest pathsbetween nodess andt via u in the network, andPs,t

represents the set of allshortest pathsconnectings andt.
For a nodeu, it can achieve the maximumbetween centralityif it appears on all the shortest paths-

i.e., |Ps,t(u)|
|Ps,t |

= 1
.

of all the node pairs in the network, like the central node in the star-structured
graph. Formally, in such a case given a network with node setV, the maximumbetween centrality
nodeu achieves can be represented as

Cmax
b (u) =

!

s,t#V,s-= t-= v

|Ps,t(u)|
|Ps,t|

=
!

s,t#V,s-= t-= v

1

= 2
/

|V| ) 1
2

0

= (|V| ) 1)(|V| ) 2). (3.30)

To ensure thebetweenness closenessmeasure in different networks are comparable, one effective
way will be to rescale thebetweenness centralityto range[0, 1] with the maximumbetween centrality
in the network.

Cn) b(u) =
Cn) b(u)
Cmax

b (u)
=

"
s,t#V,s-= t-= v

|Ps,t(u)|
|Ps,t |

(|V| ) 1)(|V| ) 2)
, (3.31)

To compute the shortest path between all pairs of nodes in a graphG = (V, E), algorithms, like
the FloydÐWarshall algorithm, can be used with anO(|V|3) time cost. In the exercises, we will have
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an example about thebetweenness centrality, and the readers can try to compute the node centrality
scores according to the above deÞnitions.

3.3.3 Closeness

Via the connections, nodes in networks will be closely correlated with each other and have different
closeness scores with each other. In this part, we will introduce several frequently usedcloseness
[67] measures for the node pairs in networks. To illustrate the measures more clearly, we will use the
social networks as an example, where the nodes denote the users and links represent the friendship
connections.

3.3.3.1 Local Structure-Based Closeness Measures
Many node closeness measures can calculate the proximity among user nodes with the social network
local structure information, like the shared common neighbors. In this part, we will introduce a number
of local network structure-based user node closeness metrics as follows, which can effectively measure
the social proximity scores among the users.

¥ Reciprocity: For the social networks involving directed links among the nodes (i.e., the link
denotes thefollow relationship), given a pair of nodesu andv in the network, there could exist
a link between them inside the networks. For example, if useru follows v in the network, there
will exist a directed linku * v (i.e., (u, v) ) pointing from useru to userv. When measuring the
closeness between usersu andv, the connected user pairs are generally much closer to each other
compared against the disconnected ones. Viewed in this perspective, ifu follows v (or v follows
u), such a link will indicate the strong closeness between these two users. Meanwhile, in the real-
world online social networks, most users tend to follow the celebrities. The follow link between
regular users and the celebrities may not necessarily denote they are close in the network, like the
celebrities may not even know his/her followers.
One measure that can denote the closeness between two users, e.g.,u andv, in the social networks
is thereciprocal links[22]. Given that useru follows v in the network (i.e.,(u, v) exists in the
network), if v also followsu back (i.e.,(v, u) also exists), thenu andv tend to be very close to
each other. Here, link(v, u) will be called thereciprocal link of (u, v) . Thereciprocal linkscan
also correctly measure the closeness between regular users and celebrities in social networks. For
instance, if regular useru follows a celebrityv in a social network, andv also followsu via a
reciprocal link, it can indicate thatu andv tend to know each other and should be close to each
other. Such a measure will also work for two regular users or two celebrity users.
Formally, thereciprocity closenessmeasure between usersu andv can be represented as

CR(u, v) = I ((u, v) # E & (v, u) # E), (3.32)

whereE denotes the link set in the social network andI (á) returns 1 if the condition can hold.
Besides measuring the closeness between pairs of user nodes, thereciprocitycan also be applied
to measure the closeness of the whole networkG, which can be represented as

CR(G) =

"
u,v#V,u-= v CR(u, v)

|V|(|V| ) 1)

=

"
u,v#V,u-= v I ((u, v) # E & (v, u) # E)

|V|(|V| ) 1)
. (3.33)
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Thereciprocityof a network denotes among all the potential user pairs in the network, how many
percentages of them have the bi-directional follow links. For a network with a largerreciprocity
score, the connections among users in the network will be stronger, which also indicates closer
relationships among the internal nodes.

¥ Common Neighbor: Reciprocity is a closeness measure based on the connections between
pairwise user nodes in the network. Actually, besides such pairwise links, via the connections
with the other neighbors, many other closeness measures can be deÞned for user pairs in social
networks as well, like thecommon neighbor(CN) [35,67] closeness measure.
Given two usersu, v # V in an undirected social network, ifu andv share lots of common friends,
it will indicate that they are highly likely to be close friends and may know each other. Formally,
according to the introduction provided in the previous sections, we can formally represent the set
of online friends whom usersu, v have in the network as sets! (u) and! (v) , respectively. The
common neighborcloseness measure between usersu andv can be formally represented as

CCN (u, v) = | ! (u) . ! (v) |. (3.34)

For the directed networks, we can deÞne several more reÞned common neighbor measures, like
common in-neighbors (i.e., the common followers), common out-neighbors (i.e., the common
followees), common all-neighbors (i.e., the common connected neighbors regardless of the link
directions), since the links among users will have a speciÞc direction.

¥ JaccardÕs CoefÞcient: Considering thatCN(u, v) can be a very large value merely because the
two users both have a lot of neighbors rather than they are strongly related to each other. In other
words, the common neighbor measure will have some problems when being used to compute
the closeness between certain active users, e.g., the celebrities sharing lots of common fans.
Furthermore, the common neighbor measure can neither be used to compare the closeness among
the user pairs in different networks, due to the different network scales. One way to overcome these
aforementioned problems will be to normalize the common neighbor measures with the usersÕ
degrees, which will introduce the followingJaccardÕs coefÞcient[24,67] measure.
Given the two usersu andv in an undirected network, we can represent theJaccardÕs coefÞcient
closeness measure between them as

CJ C(u, v) =
|! (u) . ! (v) |
|! (u) / ! (v) |

, (3.35)

where the denominator denotes the number of users connected to eitheru or v. Therefore, for the
celebrities, users, or networks with a relatively large scales, the user node closeness will be rescaled
by assigning them with a larger penalty.
In the case that the networks are directed, different other types of directed versions of JaccardÕs
coefÞcient measures can be deÞned, just like the directedcommon neighbormeasures we deÞne
before. JaccardÕs CoefÞcient can be treated as a weighted version of common neighbor, where
each shared neighbor is assigned with an identical weight1|! (u) / ! (v) | . Many other weights can also

be applied actually, like 1
|! (u) |+| ! (v) | used inS¿rensen Index[50], 1

min{|! (u) |,|! (v) |} used inHub

Promoted Index[44], 1
max{|! (u) |,|! (v) |} used in theHub Depressed Index[80], and 1

|! (u) |"| ! (v) | in
theLeichtÐHolmeÐNewman Index[31].

¥ Adamic/Adar : Meanwhile, in measuring the closeness between users, different common users
will play a different role and should have a different weight. To achieve such a goal, a closeness

!"#$%&''()'*%+,-./*



3.3 Network Measures 93

measureAdamic/Adar(AA) [ 1,67] index is proposed, which penalizes the shared neighbor nodes
with larger degrees. Formally, the AA index between usersu andv can be deÞned as

CAA (u, v) =
!

w#(! (u) . ! (v))

1
log|! (w) |

. (3.36)

For each of the common neighborw shared byu andv, the weight assigned tow is 1
log|! (w) | in

AA. The shared common neighbors with smaller degrees will play an important role in indicating
the closeness between the user pair. For the directed networks, by considering the link directions,
several directed version of AA can be introduced as well. Besides AA, some other similar measures
have been proposed, which assign the shared common neighbors with a different weight, like1

|! (w) |
used in theResource Allocation Index(RA) [80].

3.3.3.2 Global Path-Based Closeness Measure
In addition to the local network structure-based closeness measures, many other closeness measures
based on paths throughout the network have also been proposed to measure the proximity among the
user nodes.

¥ Shortest Path: Generally, the social closeness among users can be measured by the distance among
them in the network structure. Given two users who are far away from each other via all the
potential paths connecting them (or they are isolated without any paths), they will have a very
low closeness score. On the other hand, for the users who are directly connected via a link or a path
of a very short length, they should be closer to each other compared with the isolated users. Based
on such an intuition, we can deÞne the closeness measure based on the distance of theshortest path
[67] connecting users in the network:

CSP(u, v) = min{|p|}p#Pu,v , (3.37)

wherePu,v represents the set of paths connecting usersu andv inside the network, and|p| denotes
the distance of pathp.

¥ Katz: Besides the shortest path, all the potential paths connecting user pairs in the networks
can indicate their social closeness. Meanwhile, longer paths will show weaker closeness, and
shorter paths denote stronger closeness. TheKatzcloseness measure [25,67] can integrate all these
paths together to deÞne the closeness scores among the users in the networks. Formally, theKatz
closeness between usersu andv can be deÞned as

CKatz(u, v) =
lmax!

l= 1

%l |P l
u,v |, (3.38)

wherelmax denotes the longest path connectingu andv, P l
u,v denotes the set of paths of lengthl

connectingu andv in the network. Parameter%# [0, 1] is a regularizer term. Normally, smaller
%favors shorter paths as%l can decay very quickly asl increases when%is small, in which case
theKatzmeasure will behave like the closeness measures based on the local neighbors introduced
before.
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3.3.3.3 Random Walk-Based Closeness Measure
In addition to the closeness measures that can be calculated from the network structure directly, there
also exist another category of closeness measures that can calculate the closeness scores among users
based onrandom walk[36,67]. In this part, we will introduce the concept ofrandom walkÞrst, and
provide the introduction to several closeness measures based on it, includinghitting time [37, 67],
commute time[33,67], andcosine similarity[23,67].

Formally, given a networkG = (V, E), let matrixA # {0, 1}|V|"| V| be the adjacency matrix of
networkG, where entryA(i, j ) = 1 iff link (ui , uj ) # E. The normalized matrix ofA by rows can
be represented asP = D) 1A, where diagonal matrixD of A has valueD(i, i) =

"
j A(i, j ) on

its diagonal andP (i, j ) denotes the probability of stepping on nodeuj from nodeui during the walk
process. Let vectorx(&)(i) denote the probabilities that a random walker is located at user nodeui # V
at time&. Then such a probability vector at time&+ 1 will be updated as follows:

x(&+ 1)(i) =
!

j

x(&)(j )P (j, i). (3.39)

In other words, the updating equation of vectorx will be as follows, and such an updating process
will continue until convergence, i.e.,

Updating Equation:x(&+ 1) = P, x(&), (3.40)

Convergence Equation:x(&+ 1) = x(&), (3.41)

which will lead to the Þnal stationary distribution vectorx to be

x = P, x. (3.42)

The above equation denotes that the Þnal stationary probability distribution vectorx of random
walk is actually an eigenvector of matrixP, corresponding to eigenvalue 1. Some existing works
[15] have pointed out that if a Markov chain isirreducibleandaperiodicthen the largest eigenvalue
of the transition matrixP, will be equal to 1 and all the other eigenvalues will be strictly less than
1. In addition, in such a condition, there will exist a unique stationary distribution which is vector
x obtained at convergence of the updating equations. Here, we will not cover the proof to the above
statement, which will be left as an exercise for the readers at the end of this chapter.

¥ Hitting Time : Let a variablex(&) = u denote that a random walker is at nodeu at step&, and the
hitting time-based closeness measure between usersu andv can be represented as:

CHT (u, v) = E({&|x(&) = v & x(0) = u}), (3.43)

whereE(á) denotes the expectation of the variable.
Considering a random walker can reachv from u via different paths. The above equation denotes

the expected number of steps to reachv from u, which is also called theaverage hitting time
[37, 67]. Generally, close friends in the online social networks will have a smallaverage hitting
time.
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Another way to deÞne thehitting timebetween nodesu andv is to count the minimum number
of steps needed to reachv from u, which can be represented as:

CmHT (u, v) = min{&|x(&) = v & x(0) = u}, (3.44)

which is also called theminimum hitting timemeasure.
¥ Commute Time: According to the above deÞnition ofhitting time, we can see that the measure is

actually asymmetric, i.e.,CHT (u, v) -= CHT (v, u) , especially when the networks are directed.
Such an asymmetric property will cause some problems when applying thehitting time in
measuring the closeness among users in the real-world social networks. To overcome such a
problem, some new measures, likeCommute Time[33, 67], have been proposed, which counts
thehitting timebetween user pairs from both of the directions, i.e.,

CCT(u, v) = CHT (u, v) + CHT (v, u). (3.45)

Formally, based on the adjacency matrixA, we can deÞne its corresponding Laplace matrix as
L = D ) A (D is a diagonal matrix). The pseudo-inverse matrix ofL can be represented asL  , and
thecommute timefor user pairs(ui , uj ) can be represented as

CCT(ui , uj ) = 2|E| á(L   (i, i)

+ L   (j, j ) ) 2L   (i, j )). (3.46)

The proof to the above equation will not be provided here, and more detailed information for the
proof is available in [67].

¥ Cosine Similarity: With the pseudo-inverse matrixL   , we can introduce a vectorzu = (L   )
1
2 eu

and vectoreu is a binary vector of 0s except the entries corresponding to nodeu which is Þlled
with 1. According to existing works, the closeness between usersu andv can be deÞned based on
thecosine similarity[23,67] measure of vectorszu andzv as follows:

CCS(u, v) =
z,

u zv1
(z,

u zu)(z,
v zu)

. (3.47)

Furthermore, based on the pseudo-inverse matrixL   , the above cosine similarity can be
represented as

CCS(ui , uj ) =
L   (i, j )

1
L   (i, i) áL   (j, j )

. (3.48)

These above closeness measures are all deÞned based on the regularrandom walk model.
Meanwhile, in recent years, several variantrandom walkmodels have been proposed, which allow
the walker to jump back to the starting point with a certain chance. Based on the deÞnition of random
walk, if the walker is allowed to return to the starting point with a probability of 1) c, wherec # [0, 1],
then the new random walk method is formally deÞned asrandom walk with restart(RWR) [41], whose
updating equation is shown as follows:

x(&+ 1)
u = cP, x(&)

u + (1 ) c)eu, (3.49)

!"#$%&''()'*%+,-./*



96 3 Social Network Overview

where vectorx(&+ 1)
u denotes the probability of the random walker at all the nodes in the network

starting fromu initially.
By keeping updating the vectorx(&+ 1)

u until convergence, if matrix(I ) cP, ) is invertible, we can
have the stationary distribution vector of the RWR model to be

xu = (1 ) c)(I ) cP, )) 1eu, (3.50)

Furthermore, the closeness measure between user pairsu and v with the RWR model can be
represented as

CRWR(u, v) = xu(v), (3.51)

where entryxu(v) denotes the stationary probability of walking fromu to v based on the RWR model.

3.3.4 Transitivity and Social Balance

The links in online social networks actually create various relationships among users. In this part,
we will analyze several important properties about social networks based on the connections, which
includesocial transitivity[19], clustering coefÞcient[5], andsocial balance[20,57], respectively.

3.3.4.1 Social Transitivity
In discrete mathematics, a relationR on the domainD is a transitive relation iff+u, v, w # D the
following equation can hold:

R(u, v) & R(v, w) * R(u, w). (3.52)

The transitive relation can also be used to describe the social connections among users in online
social networks. In the real world, there is a social phenomenon that

Friends of my friend can also be my friend.

Such a social phenomenon has been adopted in many friend recommender systems in online social
networks for either recommendation or candidate pruning. Given three usersu, v, w # V in an online
social network, if usersu, v are friends,v, w are friends (i.e., links(u, v), (v, w) # E), andu, w also
happen to be friends in the network, then we can observe a transitive friend relation among the three
users. These three users together with the friendship connections among them will form a triangle.
Therefore, to measure the transitivity of a network, the number of triangles existing in the network
can be an important signal.

3.3.4.2 Clustering CoefÞcient
For a network with denser connections, there tend to be more triangles formed by the users in the
network. We can measure how close a network compared to a complete network (i.e., a network with
all node pairs connected) with theclustering coefÞcientconcept. Formally, the networkclustering
coefÞcient[5] denotes among any three user nodes in the network, given that there exist two links
connecting them already, how many of them will form triangles.

Formally, let setP2 = { (u, v, w) |u, v, w # V & (u, v) # E & (v, w) # E} denote the node triples
forming paths of length 2, andT = { (u, v, w) |u, v, w # V & (u, v) # E & (v, w) # E & (u, w) # E}
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Fig. 3.8 An input graph
for network clustering
coefÞcient calculation

n4

n1

n2

n3

represent the set of node triples forming a triangle. We can represent theclustering coefÞcientof the
network structure as follows:

CC =
|T |
|P2|

. (3.53)

Since in each triangle, there exist six different closed paths of length 2 and 2 different connected
node triples in a path of length 2, the above equation can also be rewritten as follows:

CC =
Number of triangles" 6

|P2|

=
Number of triangles" 6

Number of connected triples of nodes" 2
, (3.54)

which can make the counting works simpler.

Example 3.12In Fig.3.8, we show an input graph with four nodes and four links. Among all these
nodes, there exists one single triangle structure, i.e., the triangle involvingn1, n2, andn4. Meanwhile,
there are Þve different paths of length 2, i.e.,n1) n2) n4, n2) n4) n1, n4) n1) n2, n3) n1) n2, and
n3 ) n1 ) n4. Therefore, according to the above deÞnition, we can calculate theclustering coefÞcient
score of the network to be1" 6

5" 2 = 3
5.

3.3.4.3 Social Balance
Another concept strongly correlated withtransitivity is social balance[20,57], which denotes whether
a triangle social structure is balanced or not especially insigned networks[32,77]. A signed network
denotes a social network, where the links are associated with polarities (either positive or negative).
Depending on the speciÞc network settings, the polarities attached to the links will have different
physical meanings, liketrustvs.distrust[63], friendvs.enemy[59], andgood attitudevs.bad attitude
[64].

Thesocial balancetheory describes the consistency of the signed connections among users. Some
informal cases ofsocial balancedstructures in networks include:

Friends of my friend can be my friend,
Friends of my enemy can be my enemy,
Enemies of my friend can be my enemy,
Enemies of my enemies can be my friend.

Given three usersu, v, w # V in a network, we can represent the signs of relationships among
them assu,v , sv,w andsu,w , respectively. For instance, signsu,v = + 1 denotes that usersu andv are
friends, while signsu,v = ) 1 denotes that usersu andv are enemies. The relationships among these

!"#$%&''()'*%+,-./*



98 3 Social Network Overview

Fig. 3.9 Examples of
structures based on the
social balance theory
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three users in the above four cases will form thebalanced structures, and all the remaining structures
among these three users are all calledunbalanced structure.

Example 3.13For instance, in Fig.3.9, we provide an example about thebalancedandunbalanced
social structures formed by three users (i.e.,n1, n2, andn3). Among three users in a triangle, there can
exist eight different social structure formed by them with signed links, which are shown in Fig.3.9. In
these eight cases, four of them arebalanced(as shown at the top) and four areunbalanced(as shown
at the bottom).

Actually, there exists a very simple method to determine whether a social structure isbalancedor
unbalanced. Based on the sign notations, the triangle formed by usersu, v, w is abalanced structure,
iff

su,v ásv,w ásu,w 0 0. (3.55)

Otherwise, the structure is said to beunbalanced.

3.4 Network Categories

The network concept introduced in the previous section can be used to model various types of network
structured datasets available in the real world, includingonline social networks[38], bibliographical
networks[52], transportation networks[6], andcomputer networks[10]. For instance, when we use
the concept to deÞne theonline social networks, those various types of information entities in the
social networks can be represented as the nodes, while the connections among the information entities
are denoted as the links. Different online social networks are usually of different properties, and the
corresponding network representations will have different kinds of characteristics as well.

For example, in some online social networks, the social connections among users can be (1) either
directed (e.g., the social connections are the uni-directional follow links) or undirected (e.g., the
social connections denote the bi-directional friendship links); (2) eitherweighted(e.g., users have
different closeness scores with their friends) orunweighted(i.e., no closeness information is indicated
in deÞning the social links); and (3) eithersigned(e.g., friendship links have different physical
meanings actually and the link polarities denote different social attitudes) orunsigned(no social
attitude information is provided in deÞning the social links).

Given a networkG = (V, E), the nodes and links involved in it usually belong to different
categories. Formally, we can represent the sets of node and link types involved in the network as
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N andR, respectively. Meanwhile, the corresponding network deÞnition can be updated by adding
the mappings indicating the node and link type information.

DeÞnition 3.10 (Network) Formally, a network structured data can be represented asG =
(V, E, ', () , whereV, E are the sets of nodes and links in the network, and mappings' : V * N ,
( : E * R project the nodes and links to their speciÞc types, respectively. In many cases, the
mappings' , ( are omitted assuming that the node and link types are known by default.

In this section, depending on the categories of information involved in the networks, we propose to
categorize the network data into three groups:homogeneous networks[48], heterogeneous networks
[51], andmultiple aligned heterogeneous networks[29,71Ð73], which will be introduced as follows,
respectively.

3.4.1 Homogeneous Network

DeÞnition 3.11 (Homogeneous Network)For a networkG = (V, E, ', () , if there exists one single
type of nodes and one single type of links in the network (i.e.,|N | = | R | = 1), then the network is
called ahomogeneous network.

Many different types of network structures can be represented as thehomogeneous networks
actually, like online social networks [38] involving users and friendship links only, company internal
organizational network [74, 76, 78] involving employees and the management relationships, and
computer networks [10] involving PCs and the internet connections.Homogeneous networksare one
of the simplest network structures, analysis of which can provide many fundamental knowledge about
networks with more complex structures. In the following part, we will introduce several common
homogeneous networkstructures Þrst.

3.4.1.1 Friendship Networks
Friendship networkis one of the most common homogeneous social network structures, and they can
be represented as the graphG = (V, E) deÞned before, whereV represents the set of individuals
while E denotes the set of social relationships among these individuals. Depending on whether the
links in G are directed or undirected, the social links can denote either thefollow links or friendship
links among the individuals. Given an individualu # V in an undirected friendship social network,
the set of individuals connected tou can be represented as the friends of useru in the networkG,
denoted as! (u) $ V = { v|(u, v) # E}. The number of friends that useru has in the network is also
called the degree of nodeu, i.e.,|! (u) |.

Meanwhile, in a directed networkG, the set of individuals followed byu (i.e., ! out(u) =
{v|(u, v) # E}) are called the followees ofu; and the set of individuals that followu (i.e., ! in (u) =
{v|(v, u) # E}) are called the followers ofu. The number of users who followu is called the in-degree
of u, and the number of users followed byu is called the out-degree ofu in the network. For the users
with large out-degrees, they are called thehubs[27] in the network; while those with large in-degrees,
they are called theauthorities[27] in the network.

Example 3.14In Fig.3.10, we provide two examples offriendship networks, where plot (a) involves
an undirected network and plot (b) contains a directed network. The links in plot (a) denote the
friendship links, while those in plot (b) represent the follow links. Among all the users in plot (b),
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(a)

Authority

Hub

(b)

Fig. 3.10 Examples of friendship networks: (a) Undirected friendship network, (b) directed friendship network
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n4

n5

(a)

n1

n2 n3

n4 n5 n6

(b)

Fig. 3.11 Examples of homogeneous networks: (a) Bipartite network, (b) tree

we can identify oneauthority user, i.e., the one in blue square box with lots of in-links, and onehub
user, i.e., the one in red square box with many out-links.

3.4.1.2 Computer Network
For the computer networks, like a local area network (LAN) or a wide area network (WAN), involving
a set of computers and the access relationships among the computers, they can also be represented
as the homogeneous networks as well. Generally, in a computer web, depending on the roles, the
computers in the web network can serve as either the servers or the PCs. The PCs are the regular
computers used by the end users, while the servers usually host some websites. The PCs can access the
servers by visiting the websites or connecting with them via secure shell (SSH). If we donÕt consider
the access relationships among the PCs and servers, respectively, then the computers together with
their access relationships will form abipartite network[65].

DeÞnition 3.12 (Bipartite Computer Network) Formally, abipartite networkcan be represented as
G = (VL / VR, E), whereVL andVR denote the nodes on the left and right sides in the network and
E $ VL " VR represents the access relationships between nodes on the left and right sides.

Example 3.15An example of abipartite computer networkis shown in Fig.3.11a, which involve Þve
different nodes (two on the left and three on the right) and six links, where all the nodes on the left
side are connected with the nodes on the right side. According to the above deÞnition, thebipartite
networkcan be formally represented asG = ({n1, n2} / { n3, n4, n5}, {n1, n2} " { n3, n4, n5}).
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3.4.1.3 Company Organizational Network
In many cases, the network structure or the sub-network structure of interest is a tree-structured
diagram. Formally, in mathematics and computer science,tree is a special type of connected graph
with no cycles formed by the nodes. As shown in Fig.3.11b, for the nodes intrees, those with degree
1 are called theleaf nodes(i.e., the ones at the bottom) and the remaining ones are calledinternal
nodes. The tree structured networks have several important properties, likeevery tree has at least
one edge and at least two nodes, and every tree withn nodes has exactlyn ) 1 links. We will
not provide the formal proof of these statements here. Tree is an important concept in networks
representations, and many important network structures can be represented as atree formally, like
thecompany organizational chartas discussed in [74,76,78].

DeÞnition 3.13 (Company Organizational Chart) Formally, a company management structure can
be represented as arooted treeT = (V, E, root), where V and E denote the employees and
management relationships among the employees in the company. Noderoot # V usually denotes
the CEO of the company.

Example 3.16An example of thecompany organizational chartis shown in Fig.3.12. As shown in
the Þgure, in thecompany organizational chart, all the employees will have their managers except
the CEO (i.e., Adam in the plot). The employees who are not in a management position (i.e., the
leaf nodes) are named as thebase employees. Different from the regular social networks, there
generally exist no cycles in terms of management relationships in thecompany organizational chart.
It is very important for companies, as a clear outline of the positions and responsibilities of the
employees can avoid management confusion and chaos. WhatÕs more, in thecompany organizational
chart, employees at higher levels can be connected to multiple lower-level employees, i.e., the
subordinates, at the same time. Meanwhile, each employee at lower levels will be connected to one
single employee at higher level, i.e., themanager. In other words, managers can manage multiple
employees simultaneously, while each employee reports to one single manager.

Besides thecompany organizational network, many other networks can also be represented as
tree structured diagram, likeontologies[18] outlining the relationships among differentcategories of
beings, and thecascades[26] in information diffusion indicating how information propagates from
the source users to the other users in the network.

Fig. 3.12 An example of
company organizational
chart

Adam

Bob Candy

David Eli Frank

Supervise

Organizational Chart

Supervise
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3.4.2 Heterogeneous Network

DeÞnition 3.14 (Heterogeneous Network)For a networkG = (V, E, ', () , if there exist multiple
types of nodes or links in the network (i.e.,|N | > 1, or |R | > 1), then the network is called a
heterogeneous network.

Most of the network structured data in the real world may contain very complex information
involving multiple types of nodes and connections, which can be represented as theheterogeneous
networks[51] formally. Representative examples includeheterogeneous social networks[29,54,73]
involving users, posts, check-ins, words, and timestamps, as well as the friendship links, write
links, and the other links among these nodes;bibliographic networks[52] including authors, papers,
conferences, and the write, cite, and publish-in links among them; andmovie knowledge libraries
[34] containing movies, casts, reviewers, review comments, as well as the complex links among these
nodes. Many of the concepts introduced before for thehomogeneous networkscan also be applied to
theheterogeneous networksas well.

3.4.2.1 Online Social Networks
Theonline social networks[29,54,73] usually allow the users to perform different social activities,
like make friends with other users, write posts online, andcheck-in at some places, which will generate
different kinds of information entities and very complex connections among these information entities.
Formally, anonline social networkinvolving these diverse information entities and complex links is
called aheterogeneous social network.

Example 3.17In Fig.3.13, we illustrate an example of aheterogeneous social network. Formally,
according to the heterogeneous network deÞnition, it can be represented asG = (V, E) (the mappings
are not provided), where the node setV can be divided into several subsetsV = U / P / L / T
representing theuser, post, location, andtimestampnodes, respectively. Meanwhile, depending on
the node types that the links are connected to, the links inE can also have different physical meanings
and can be further divided into subsetsE = Eu,u / Eu,p / Eu,l / Ep,t , which correspond to the friendship
links among users, and the links between users and posts, locations and timestamps, respectively.

In theheterogeneous social networks, each node can be connected with a set of nodes belonging
to different categories via various type of connections. For example, given a useru # U, the set of
user node incident tou via the friendship links can be represented as the online friends ofu, i.e., set
{v|v # U, (u, v) # Eu,u}; the set of post node incident tou via the write links can be represented as the
posts written byu, i.e., set{w|w # P, (u, w) # Eu,p }. It is very similar for the location and timestamp
nodes as well, from which we can achieve the set of locations visited by users and the collection of
timestamps that the users perform the social actions.

Many interesting research problems have been studied based on theonline social networks, like
friend recommendation[56, 61, 71, 72], social community detection[62, 68], social information
diffusion [26, 75, 76, 79] via the connections among users.Friend recommendationproblems aim
at recommending online friends for users in the social networks, which can be formulated either
as a ranking problem or as a link prediction problem.Community detectionproblem focuses on
dividing the users into different social groups, where users who frequently interact with each other
tend to appear in the same group.Information diffusionproblems aim at modeling how information
propagates within the online social networks, and when the users can be activated by certain
information propagated from their friends. These problems mentioned here will also be covered in
the following Chaps.7Ð11 in great detail.
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Fig. 3.13 An example of heterogeneous online social network

3.4.2.2 Bibliographic Networks
Another type of heterogeneous network well studied in research is called thebibliographic networks
[52], which denote the academic networks depicting the paper authorship, paper citation, and paper
publishing venues. Generally, thebibliographic networksmay involve multiple types of information
entities, like authors, papers, conferences/journals, and very complex connections among these
information entities, which can be represented as a heterogeneous network as well.

Example 3.18As shown in Fig.3.14, a bibliographic networkcan be represented as graphG =
(V, E), whereV = A / P / V containing the authors, papers, and venues (i.e., conferences or journals),
andE = Ea,p / Ep,p / Ep,v involving the authorship links between authors and papers, citation links
among the papers, and publishing links between papers and venues. In the example, MLI [73], MNA
[29], and MFC [79] are the model names proposed by the authors in their papers.

In many cases, the information entities in abibliographic networkmay also be associated with a
set of attributes indicating their properties, like expertise/skills about the authors, the title, abstract,
keywords, categories of papers, and the year, categories (like data mining, machine learning) of the
publication venues. Via the papers, the authors can get correlated with each other. For instance, given
a paperp # P, we can obtain the set of authors who are involved in writingp as{a|a # A , (a, p) #
Ea,p }. For any author pairsa1, a2 # {a|a # A , (a, p) # Ea,p }, they will be the co-authors on paper
p. Similarly, from thebibliographic network, we can also obtain the set of papers published at certain
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Fig. 3.14 An example of
heterogeneous
bibliographic network
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venuev # V as{p|p # P, (p, v) # Ep,v }. Many other interesting information, like authors who have
ever published at a similar conference and conferences frequently participated in by certain authors,
can be analyzed with the meta path concept to be introduced later as well.

Many interesting problems can be studied in thebibliographic networks, like co-author recom-
mendation [52], rankings of authors, papers and venues [53], project team formation [30, 78]. Co-
author recommendation is an important problem for academia, as it will help researchers Þnd their
collaborators to carry out the projects. The researchers, papers, and publishing venues are usually of
different quality, some of which are highly ranked but some are of lower ranks. An effective ranking
of the researchers, papers, and venues will make it easier for people to Þnd qualiÞed collaborators,
related works, and publishing venues. Meanwhile, in the real world, great researchers tend to write
innovative research papers and get them published at top-tier publishing venues. The ranking problems
of the authors, papers, and venues are usually strongly correlated. To Þnish certain research projects,
the project leader may need to build a team of researchers with different kinds of required skills. Team
formation problems aim at identifying the team members for projects. In this book, we will mainly
focus on thesocial networks, and these aforementioned problems for bibliographic networks will not
be covered in this book. However, the readers are recommended to read the referred articles, if you
are interested in these problems.

3.4.2.3 Movie Knowledge Libraries
For the online movie review sites, like IMDB1 and Douban,2 they involve very complex information
and can be represented as heterogeneous networks as well [34]. Generally, in these sites, users can post
review comments and ratings for the movies to express their favor regarding some movies. Meanwhile,
for the movies, we can obtain the cast involved in producing the movies, like the writers, directors,

1http://www.imdb.com/.
2https://www.douban.com/.
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Fig. 3.15 An example of
heterogeneous movie
network
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actors, and actress. A set of attributes can be obtained for the movies and casts as well, like movie
title, story outline, movie genres, and cast proÞle information.

Example 3.19In Fig.3.15, we illustrate an example of theheterogeneous movie knowledge library,
which can be represented as a graphG = (V, E), where the node setV = M / C/ U / P involves
the movie nodes, cast nodes, user nodes and review post nodes, and link setE = Em,c / Eu,p / Ep,m

contains the links between movies and casts, users, and review posts, and those between the review
posts and movies.

Via the heterogeneous links in these onlinemovie knowledge libraries[34], the nodes are
extensively connected with each other and lots of interesting knowledge can be discovered from
the onlineonline knowledge libraries. For example, given a moviem # M , we can obtain the set
of reviews posted for it as set{p|p # P, (p, m) # Ep,m}, based on the review comments and ratings
contained by these review posts, we can analyze the sentiment and favor of audiences about the movie.

Based on the onlinemovie knowledge libraries, research problems likemovie recommendation
[7], movie box-ofÞce analysis[3, 34], and movie planning problem[34, 45] can be studied. The
movie recommendation problems aim at recommending movies for users based on their movie
rating historical records, and inferring their potential ratings for the recommended movies. From
the investorsÕ perspective, they generally want to invest their money on promising movies that can
achieve a good box-ofÞce, while the movie box-ofÞce depends on various factors, like movie genre,
movie storyline, and movie cast. Given a movie basic proÞle information, inferring the potential box-
ofÞce can be obtained by them is an important problem. The movie planning problem is studying the
correlation between movie proÞle information and box-ofÞce in a reverse direction, which aims at
designing the optimal movie conÞgurations within the provided budget to achieve the largest movie
box-ofÞce.
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3.4.3 Aligned Heterogeneous Networks

In the real world, about the same information entities, e.g., social media users, researchers in
academia, and the imported foreign movies, a large amount of information can actually be collected
from various sources. These sources are usually of different varieties, like Facebook and Twitter, data
mining and machine learning research areas, the USA and China online movie libraries. Generally,
these multiple information sources sharing some common information entities can be modeled as
multiple aligned heterogeneous networks[29,68,72,73].

DeÞnition 3.15 (Multiple Aligned Heterogeneous Networks)Formally, themultiple aligned het-
erogeneous networksinvolving n networks can be deÞned asG = ((G(1), G(2), . . . , G (n) ), (A (1,2),
A (1,3), . . . , A (n) 1,n) )), where the networksG(1), G(2), . . . , G (n) denote thesen heterogeneous
networks andA (1,2), A (1,3), . . . , A (n) 1,n) represent the sets of undirectedanchor linksaligning these
networks.

In the above deÞnition, theanchor links[29,73] refer to the mappings of information entities across
different sources, which actually correspond to the same information entity in the real world, e.g.,
users shared between online social networks, authors involved in multiple bibliographic networks,
and the common movies shared in different movie libraries. As proposed in [29,69,70], anchor links
are usually subject to theone-to-onecardinality constraint, which can be formally deÞned as follows.

DeÞnition 3.16 (Anchor Link) Given two heterogeneous networksG(i) andG(j ) which share some
common information entities, the set ofanchor linksconnectingG(i) andG(j ) can be represented as
setA (i,j ) = { (u(i)

m , u(j )
n )|u(i)

m # V(i) & u(j )
n # V(j ) & u(i)

m , u(j )
n denote the same information entity}.

Example 3.20In Fig.3.16, we provide an example ofmultiple aligned heterogeneous social net-
works, which involve two heterogeneous networks Foursquare and Twitter, respectively. Both
Foursquare and Twitter have very complex information, which can both be represented as the
heterogeneous networks. Between these two networks, they share Þve common users, who are
connected by the red dashed anchor links across networks.

Anchor linksmainly exist between pairwise networks, when it comes to multiple (more than 2)
aligned networks, there will exist a speciÞc set of anchor links between any network pairs. Theanchor
links depict a transitive relationship among the information entities across different networks. Given
three information entitiesu(i)

m , u(j )
n , u(k)

o from networksG(i) , G(j ) , andG(k) respectively, ifu(i)
m , u(j )

n

are connected by an anchor link andu(j )
n , u(k)

o are connected by an anchor link, then the user pairu(i)
m ,

u(k)
o will be connected by an anchor link by default.

For the information entities which are connected by the anchor links, they are named as the
anchor information entities, like anchor users[73] in social networks,anchor authorsin bibliographic
networks,anchor moviesin movie knowledge libraries. Meanwhile the remaining information entities
are called thenon-anchor information entities.

DeÞnition 3.17 (Anchor Information Entities) Given a pair of heterogeneous networksG(i) and
G(j ) , the anchor linksA (i,j ) aligning them, and the information entity setsV(i) andV(j ) involved in
them, respectively, the set ofanchor information entitiesin G(i) can be represented asV(i),(i,j )

a =
{u(i)

m |u(i)
m # V(i) , ' u(j )

n # V(j ) , (u(i)
m , u(j )

n ) # A (i,j ) }. Similarly, we can also represent the set of anchor
information entities inG(j ) asV(j ),(i,j )

a $ V(j ) .
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Fig. 3.16 An example of multiple aligned heterogeneous social networks

DeÞnition 3.18 (Non-anchor Information Entities) Given a pair of heterogeneous networksG(i)

andG(j ) , the anchor linksA (i,j ) aligning them, and the information entity setsV(i) andV(j ) involved
in them, respectively, the set ofnon-anchor information entitiesin G(i) can be represented as
V(i),(i,j )

non-a = { u(i)
m |u(i)

m # V(i) , +u(j )
n # V(j ) , (u(i)

m , u(j )
n ) /# A (i,j ) } = V(i) \ V(i),(i,j )

a . In a similar
way, we can represent the set of non-anchor information entities in networkG(j ) as well, which can
be denoted asV(j ),(i,j )

non-a .

The anchor information entitiesandnon-anchor information entitiesconcepts are deÞned based
on the provided network pairs, which will be different (e.g., those in networkG(i) ) as the network
pair changes. For instance, the set ofanchor information entitiesandnon-anchor information entities
in G(i) between network pairsG(i) andG(j ) will be different from those inG(i) between network
pairsG(i) andG(k). Furthermore, depending on the availability ofanchor information entitiesand
non-anchor information entities, the networks can be eitherfully aligned, partially aligned, andnon-
aligned, respectively.

DeÞnition 3.19 (Full Alignment) Given a pair of heterogeneous networksG(i) andG(j ) with non-
anchor information entity setsV(i),(i,j )

non-a andV(j ),(i,j )
non-a , respectively.G(i) is said to be fully aligned with

G(j ) iff V(i),(i,j )
non-a = 1 , andG(j) is said to be fully aligned withG(i) iff V(j ),(i,j )

non-a = 1 . G(i) andG(j )

are said to be mutually fully aligned iffV(i),(i,j )
non-a = 1 & V(j ),(i,j )

non-a = 1 .

NetworkG(i) is said to be fully aligned with networkG(j ) if the information entities involved in
G(i) are a subset of those involved inG(j ) , and vice versa. NetworksG(i) andG(j ) are mutually fully
aligned if the information entities inG(i) andG(j ) are actually identical. Fully aligned networks may
exist in the real world, but a much common scenario will bepartial alignmentof networks instead.

!"#$%&''()'*%+,-./*



108 3 Social Network Overview

DeÞnition 3.20 (Partial Alignment) Given a pair of heterogeneous networksG(i) and G(j ) with
information entity setsV(i) and V(j ) and anchor information entity setsV(i),(i,j )

a and V(j ),(i,j )
a ,

respectively. NetworkG(i) is partially aligned with networkG(j ) iff V(i),(i,j )
a -= 1 & V(i) -= V(i),(i,j )

a ,
and vice versa. NetworksG(i) andG(j ) are said to be mutually partially aligned iffV(i),(i,j )

a -= 1 &
V(i) -= V(i),(i,j )

a andV(j ),(i,j )
a -= 1 & V(j ) -= V(j ),(i,j )

a .

NetworkG(i) is said to be partially aligned with networkG(j ) if one part of the information entities
in G(i) are involved inG(j ) . Bothfull alignmentandpartial alignmentare not symmetric relationships.
In the case that all the information entities inG(i) are also involved inG(j ) while many information
entities inG(j ) are not involved inG(i) , networkG(i) will be fully aligned withG(j ) but G(i) will be
partially aligned withG(i) instead.

DeÞnition 3.21 (Non-alignment) Given a pair of heterogeneous networksG(i) andG(j ) with anchor
information entity setsV(i),(i,j )

a andV(j ),(i,j )
a , respectively. NetworksG(i) andG(j ) are said to be non-

aligned iff the information entities involved in two networksG(i) andG(j ) are totally different, i.e.,
V(i),(i,j )

a = 1 andV(j ),(i,j )
a = 1 .

Different from full alignment and partial alignment, the non-alignmentis a bi-directional
relationships. In other words, ifG(i) is non-aligned withG(j ) , thenG(j ) will be non-aligned with
G(i) as well.

Lots of real-world network structures can actually share some common information entities, and
can be represented as themultiple aligned heterogeneous networks. We will provide several examples
as follows.

3.4.3.1 Multiple Aligned Heterogeneous Online Social Networks
To enjoy different kinds of social network services at the same time, users nowadays are usually
involved in multiple online social networks simultaneously, e.g., Facebook, Twitter, Foursquare, and
Google+ . For the online social networks sharing common users, they can be represented as the
multiple aligned heterogeneous online social networks.

Example 3.21In Fig.3.16, we have provided an example of two partially aligned heterogeneous
online social networks: Foursquare and Twitter. Both Foursquare and Twitter can provide the
users with different kinds of social network services, like make online friends with other users,
write/like/comment on posts, check-in at some locations, and their online social activities are also
associated with timestamps as well. Many users tend to join in Foursquare and Twitter at the same
time, who are connected by the anchor links in the example.

In each of these twoaligned heterogeneous social networks, we can have more data about the
common users, which provides researchers and practitioners the opportunity to study usersÕ social
behaviors within these two networks. Moreover, the multiple aligned networks setting also allows the
researchers to carry out a comparative study of usersÕ social behaviors in different networks, which
will provide a more comprehensive understanding about their social preferences and personal social
behaviors.

3.4.3.2 Multiple Aligned Heterogeneous Bibliographic Networks
In the academia, the researchers are usually involved in various interdisciplinary projects and may
collaborate with many researchers from other areas. For instance, the researchers of bioinformatics
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Fig. 3.17 An example of multiple aligned heterogeneous bibliographic networks

tend to have background in either computer science or biology; people working on data mining can
publish works in either machine learning, data mining, or database; and the researchers working on
neural networks can be experts on machine learning or neural science. Viewed in such a perspective,
various closely related research areas may share lots of common researchers, and each researcher
can also publish their works in different areas as well. Such complex relationships can be effectively
modeled as themultiple aligned heterogeneous bibliographic networksformally.

In Fig.3.17, we show an example of two partially aligned heterogeneous bibliographic networks
in data mining and database. Between these two networks, there exist a large number of shared
researchers, like Jiawei Zhang, Philip S. Yu, and Charu C. Aggarwal, who are active in both of these
two areas and have published lots of academic papers in data mining and database conferences, like
KDD, ICDM, SDM and ICDE, SIGMOD, VLDB. These two areas have different focuses in research
actually, where data mining emphasizes more on knowledge discovery, while database is interested in
data storage and management instead. Therefore, the researchers involved in these two areas are not
exactly identical, and the shared researchers are indicated with the anchor links between them.

The multiple aligned heterogeneous bibliographic network setting allows us to study many
interesting problems. In each of the networks, we can analyze the researchersÕ personal research
interests, their preferred paper topics, frequently published conferences, which will be helpful to
divide them into different research groups. Meanwhile, across the aligned bibliographic network, we
can obtain their activities in different research areas. With the data about them across these different
research domains, we can know their interdisciplinary research interest and activities, and it will
provide extra information for us when studying researchersÕ personal cross-domain research interest
shift, as well as their research progress in different domains.
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3.4.3.3 Multiple Aligned Heterogeneous Online Movie Knowledge Libraries
To provide the movie related services in many different countries, lots ofonline movie knowledge
library [34] exist on the web, like IMDB launched in the USA, Douban launched in China. Nowadays,
to achieve more box-ofÞce, the movie import is a common practice between the movie markets in
different countries. A movie can be on show in the USA Þrst, and then get imported to show in China.
Therefore, the IMDB and Doubanonline movie knowledge librarycan share lots of common movies,
and can be modeled as themultiple aligned heterogeneous online movie knowledge librariesformally.

Example 3.22In Fig.3.18, we show an example of two partially aligned heterogeneous movie
knowledge libraries in the USA and China: IMDB and Douban. Both IMDB and Douban have a
very large collection of movies either native or imported from other countries. Lots of movies are
very welcome and popular in both the USA and China, and are included in both IMDB and Douban,
which act as the bridges aligning these different libraries together. For instance, in the example, these
three provided movies, i.e., Avatar, Titanic, and The Revenant, exist in both Douban and IMDB, which
make these two movie libraries fully aligned.

Generally, the common movie tend to have identical proÞle information in different movie
knowledge libraries (can be in different languages), while they can receive the review comments
and rating from the audience in different countries. These review comments and rating data obtained
from different online movie knowledge libraries provide the opportunity to study the preferences of
audiences from different countries about the shared movies. Moreover, many movies will be on show
in the native countries Þrst, and then get imported by other countries. Before these movies entering
a new market, some prior knowledge about the movies in the original native country is available
already, which will be very useful in scheduling the screenings in other countries, so as to maximize
the revenue for theaters.

IMDB Douban

Fig. 3.18 An example of multiple aligned heterogeneous movie libraries
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3.5 Meta Path

To deal with the social networks, especially those with heterogeneous information, a useful technique
is themeta path[52,53,73]. Meta pathis a concept deÞned based on the network schema, outlining
the connections among nodes belonging to different categories. For the nodes which are not directly
connected, their relationships can be depicted with the meta path concept. In this part, we will Þrst
introduce the meta path concept, and then talk about a set of meta paths within, as well as across
real-world heterogeneous social networks.

3.5.1 Network Schema

Given a networkG = (V, E), we can deÞne its correspondingnetwork schema[52,53,73] to describe
the categories of nodes and links involved inG.

DeÞnition 3.22 (Network Schema)Formally, the network schema of networkG = (V, E, ', ()
can be represented asSG = (N , R), whereN andR denote the node type set and link type set of
networkG, respectively.

Network schema provides a meta level description of the network. Meanwhile, if a networkG can
be outlined by the network schemaSG, G is also called anetwork instanceof the network schema. For
a given nodeu # V, we can represent its corresponding node type as'(u) = N # N , and callu as an
instance of node typeN, which can also be represented asu # N for simplicity. Similarly, for a link
(u, v) , we can denote its link type as(((u, v)) = R # R. To represent that link(u, v) is an instance

of the link typeR, we can use the notations like(u, v) # R, or (u, v) # S
R
)* T for simplicity, where

'(u) = S # N and'(v) = T # N . The inverse relation typeR) 1 holds naturally forT
R) 1

) )* S, and
R is generally not equal toR) 1, unlessR is symmetric.

Example 3.23In Fig.3.19, we show the network schema of the heterogeneous social network on the
left. According to the network structure, there exist four different node types, i.e., user, post, time,
location, and four link types, i.e., follow, write, at, check-in at, in the network. These node types and
link types together deÞne the input network schema.

Meanwhile, in Figs.3.20 and3.21, we provide the network schemas of the input heterogeneous
bibliographical network and the heterogeneous movie knowledge library, respectively. According
to the bibliographical network structure, there exist three different node types and three link types,
respectively. The movie knowledge library has a more complex structure, involving Þve different
node types and four link types.

3.5.2 Meta Path in Heterogeneous Social Networks

Meta path[52,53,73] is a concept deÞned based on the network schema denoting the correlation of
nodes based on the heterogeneous information (i.e., different types of nodes and links) in the networks.
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Fig. 3.19 An example of heterogeneous social network schema
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Fig. 3.20 An example of heterogeneous bibliographical network schema

DeÞnition 3.23 (Meta Path) A meta pathP deÞned based on the network schemaSG = (N , R)

can be represented asP = N1
R1)* N2

R2)* á á áNk) 1
Rk) 1
))) * Nk, whereNi # N , i # {1, 2, . . . , k} and

Ri # R, i # {1, 2, . . . , k ) 1}.

Furthermore, depending on the categories of node and link types involved in the meta path, we
can specify the meta path concept into two reÞned groups, likehomogeneous meta path[73] and
heterogeneous meta path[73].

DeÞnition 3.24 (Homogeneous/Heterogeneous Meta Path)Let P = N1
R1)* N2

R2)*

á á áNk) 1
Rk) 1
))) * Nk denote a meta path deÞned based on the network schemaSG = (N , R). If
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Fig. 3.21 An example of heterogeneous movie library schema

all the node types and link types involved inP are of the same category,P is called ahomogeneous
meta path; otherwise,P is called aheterogeneous meta path.

The meta paths connect any kinds of node type pairs, and speciÞcally, for the meta paths starting
and ending with the user node types within the same network, such a meta path is called thesocial
meta paths[73].

DeÞnition 3.25 (Social Meta Path)Let P = N1
R1)* N2

R2)* á á áNk) 1
Rk) 1
))) * Nk denote a meta path

deÞned based on the network schemaSG = (N , R). If the starting and ending node typesN1 andNk

are both the user node type,P is called asocial meta path.

Users are usually the main focus in social network studies, and thesocial meta pathsconnecting
the user node type will be frequently used in both research and real-world applications and services.
If all the node types in the meta paths are user node type and the link types are also of an identical
category, then the meta path is called thehomogeneous social meta path. The number of path segments

in the meta path is called the meta path length. For instance, the length of meta pathP = N1
R1)*

N2
R2)* á á áNk) 1

Rk) 1
))) * Nk is k ) 1. Meta paths can also been concatenated together with themeta

path composition operator[52,53,73].

DeÞnition 3.26 (Meta Path Composition)Meta pathsP1 = N 1
1

R1
1)* N 1

2

R1
2)* á á áN 1

k) 1

R1
k) 1

))) * N 1
k ,

andP2 = N 2
1

R2
1)* N 2

2

R2
2)* á á áN 2

l) 1

R2
l) 1

) ) * N 2
l can be concatenated together to form a longer meta

pathP = P1 2 P2 = N 1
1

R1
1)* á á á

R1
k) 1

))) * N 1
k (or N 2

1)
R2

1)* N 2
2

R2
2)* á á áN 2

l) 1

R2
l) 1

) ) * N 1
l , if the ending

node type ofP1 is the same as the starting node type ofP2, i.e.,N 1
k = N 2

1. The new composed meta
path will be of lengthk + l ) 2.

!"#$%&''()'*%+,-./*



114 3 Social Network Overview

Meta pathP = N1
R1)* N2

R2)* á á áNk) 1
Rk) 1
))) * Nk can also been treated as the concatenation

of simple meta pathsN1
R1)* N2, N2

R2)* N3, . . ., Nk) 1
Rk) 1
))) * Nk, which can be represented as

P = R1 2 R2 2 á á á 2Rk) 1 2 Rk. Here, we use the link type to denote the simplest meta paths of
length 1.

Example 3.24For instance, based on the network schemas shown in Figs.3.19, 3.20, and3.21, a
group of meta paths can be deÞned. Here, we can provide a group of them as follows, which mainly
connect the user/author/movie pairs speciÞcally.

1. Heterogeneous Social Network

¥ User
f ollow
)))) * User (orU * U), which denotes a simplefollow meta path.

¥ User
f ollow

3 ))) ) User
f ollow
)))) * User (orU 3 U * U), which denotes acommon followermeta

path.

¥ User
f ollow
)))) * User

f ollow
3 ))) ) User (orU * U 3 U), which denotes acommon followeemeta

path.

¥ User
check-in at
) ))))) * Location

check-in at
3 ))))) ) User (orU * L 3 U), which denotes acommon

location check-inmeta path.
2. Heterogeneous Bibliographic Network

¥ Author
write
))) * Paper

write
3 )) ) User (orA * P 3 A), which denotes aco-authormeta path.

¥ Author
write
))) * Paper

publish at
)))))) * Venue

publish at
3 ))))) ) Paper

write
3 )) ) Author (orA * P * V 3

P 3 A), which denotes acommon publishing venuemeta path.

¥ Author
write
))) * Paper

cite
))* Paper

write
3 )) ) Author (or A * P * P 3 A), which denotes a

citation meta path.
3. Heterogeneous Movie Library

¥ Movie
about

3 )) ) Review
write

3 )) ) User
write
))) * Review

about
))) * Movie (or M 3 R 3 U * R *

M ), which denotes ashared review authormeta path.

¥ Movie
direct

3 )) ) Director
direct

3 )) ) Movie (or M 3 D * M ), which denotes ashared director
meta path.

¥ Movie
act-in

3 )) ) Actor
act-in

3 )) ) Movie (or M 3 A * M ), which denotes ashared actormeta
path.
Besides these meta paths shown above, many other meta paths can also be deÞned based on the

network schema structures, which will not be provided here and the readers can try to deÞne some
other useful meta paths on your own.

3.5.3 Meta Path Across Aligned Heterogeneous Social Networks

Besides the meta paths within a network, the meta paths can also be deÞned across multiple aligned
heterogeneous networks via theanchor meta path[73] (or the anchor link type).

DeÞnition 3.27 (Anchor Meta Path) Let G(1) and G(2) be two aligned heterogeneous networks
sharing the common anchor information entity of typesN (1) # N (1) andN (2) # N (2), respectively.
The anchor meta path between the schemas of networksG(1) andG(2) can be represented as meta

path) = N (1) Anchor
3 ))) * N (2) of length 1.
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Fig. 3.22 An example of aligned heterogeneous social network schema

Formally, via theanchor meta path, given one pair of inputaligned heterogeneous social network
as shown in Fig.3.16, we can formally represent the network schemas in Fig.3.22. Theanchor meta
pathis the simplest meta path across aligned networks, and a set ofinter-network meta paths[73] can
be deÞned based on the intra-network meta paths and the anchor meta path.

DeÞnition 3.28 (Inter-Network Meta Path) Given a meta path* = N1
R1)* N2

R2)*

á á áNk) 1
Rk) 1
))) * Nk, * is an inter-network meta pathbetween networksG(1) and G(2) iff

' m # {1, 2, . . . , k}, Rm = Anchor.

The inter-network meta pathscan be viewed as a composition ofintra-network meta pathsand
theanchor meta path. An inter-network meta pathcan be a meta path starting with ananchor meta
path followed by theintra-network meta paths, or those withanchor meta pathsin the middle and
starting/ending with theintra-network meta paths. Here, we would like to introduce several categories
inter-network meta pathsinvolving the anchor meta paths at different positions as follows [73]:

¥ * (G (1), G(2)) = )(G (1), G(2)), which denotes the set of simplestinter-network meta paths
composed of the anchor meta path only between networksG(1) andG(2).

¥ * (G (1), G(2)) = )(G (1), G(2)) 2 P (G(2)), which denotes the set ofinter-network meta paths
starting with anchor meta path and followed by the intra-network meta path in networkG(2)

connected by an anchor meta path between networksG(1) andG(2).
¥ * (G (1), G(2)) = P (G(1)) 2 )(G (1), G(2)), which denotes the set ofinter-network meta paths

starting with the intra-network meta path in networkG(1) followed by an anchor meta path between
networksG(1) andG(2).

¥ * (G (1), G(2)) = P (G(1)) 2 )(G (1), G(2)) 2 P (G(2)), which denotes the set ofinter-network meta
pathsstarting and ending with the intra-network meta path in networksG(1) andG(2), respectively,
connected by an anchor meta path between networksG(1) andG(2).

¥ * (G (1), G(2)) = P (G(1)) 2 )(G (1), G(2)) 2 P (G(2)) 2 )(G (2), G(1)), which denotes the set of
inter-network meta pathsstarting and ending with node types in networkG(1) and traverse across
the networks twice via the anchor meta path.

¥ * (G (1), G(2)) = P (G(1)) 2)(G (1), G(2)) 2P (G(2)) 2)(G (2), G(1)) 2P (G(1)), which denotes the
set ofinter-network meta pathsstarting and ending with theintra-network meta pathsin network
G(1) and traverse across the networks twice via the anchor meta path between them.
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Example 3.25Based on the above descriptions, we can also represent several examples ofinter-
network meta pathsacross social networks as follows:

¥ User(1) anchor
3))) * User(2) f ollow

)))) * User(2) (or U(1) 4 U(2) * U(2)).

¥ User(1) f ollow
)))) * User(1) anchor

3))) * User(2) f ollow
3 ))) ) User(2) (or U(1) * U(1) 4 U(2) 3 U(2)).

¥ User(1) f ollow
3 ))) ) User(1) anchor

3))) * User(2) f ollow
)))) * User(2) (or U(1) 3 U(1) 4 U(2) * U(2)).

¥ User(1) check-in at
) ))))) * Location(1) check-in at

3 ))))) ) User(1) anchor
3))) * User(2) f ollow

)))) * User(2) (or U(1) *
L (1) 3 U(1) 4 U(2) * U(2)).

Generally, shorter meta paths may convey more concrete physical meanings compared with the
long meta paths. Due to the extensive connections among nodes in networks, extremely long meta
paths will may not be useful, since almost all the node pairs in the network can be connected by
such meta path instances. In the following parts, we will introduce several meta path-based network
measures about node degree, node centrality, and node pair closeness, respectively.

3.5.4 Meta Path-Based Network Measures

The meta path concept introduced above provides a meta level description of information available
within and across networks, and they can be used to compute various node and link measures based
on the heterogeneous social networks. All the degree, centrality, and closeness measures introduced
in the previous subsections are mainly based on the direct social links among users in homogeneous
networks. In this part, we will extend these measures to the multiple aligned heterogeneous networks
scenario based on the meta path concept speciÞcally.

3.5.4.1 Meta Path-Based Node Degree
Via the meta paths, nodes in the networks which are not directly connected can be extensively
correlated with each other. In this part, we will take the user node as an example, and try to study
how the users are connected with each other via the meta paths. LetU(1) be a user set in networkG(1),
andP be the set of various meta paths starting and ending with the user node type in networkG(1)

(which can be either intra-network or inter-network meta paths).
For each user pair in networkG(1), e.g.,u, v # U(1), based on one speciÞc meta pathPk # P, we

can denote the set of concrete meta path instances connectingu andv as setPk(u, v) . The number of
user nodes thatu is connected with, i.e., its degree, based on meta pathPk # P can be denoted as

DPk(u) =
!

v#U(1)

|Pk(u, v) |. (3.56)

Furthermore, for all these meta paths in setP, we can represent the degree vector of useru as a
|P|-dimensional degree distribution vector

DP (u) = [ DP1(u), D P2(u), . . . , D P|P | (u)], . (3.57)

Generally, for these different meta paths in the setP, they are usually of different weights. For
instance, in some scenarios, shorter meta paths can denote stronger connections among users than
longer meta paths; meta paths among the distinguishable node types (i.e., those only a small number
of node types will be connected with them) will represent a more effective correlation than those
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composed of indistinguishable ones (i.e., those all the node types can be connected with them). By
taking the meta path differences into consideration, we can represent the weighted meta path-based
node degree as

D(u) =
!

Pi #P

wPi áDPi (u), (3.58)

where vector[wP1, wP2, . . . , wP|P | ]
,

-"
Pi #P wPi = 1

.
represents the weight parameters corre-

sponding to the different meta paths.

3.5.4.2 Meta Path-Based Node Centrality and Closeness
Given the user node type and the set of meta pathsP in G(1), based on each of the meta path
Pi # P, the connections among users can be organized as homogeneous (weighted) graphGPi =
(U, EPi , wPi ), where the link setEPi = { (u, v) |u, v # U, Pi (u, v) -= 1} . MappingwPi : EPi * R
denotes the weight of links inEPi , wherewPi ((u, v)) = | Pi (u, v) | represents the number of meta path
instances ofPi connectingu andv. If we donÕt care about the link weights, the weight mapping is
optional in the graph deÞnition and can be discarded. In other words, based on the meta path concept,
we can transform aheterogeneous social networkinto a group ofhomogeneous networksinstead,
where the edge weight equals to the meta path instance number.

Based on graphGPi , we can deÞne thecentralitymeasure of useru # U asCPi (u), which denotes
either degree centrality, eigen-centrality, Katz centrality, pagerank centrality, or betweenness centrality
that we have introduced before. Similar to the meta path-based degree concept introduced before,
different meta path can play a different role in deÞning the usersÕ centrality. One way to deÞne the
centrality measure of useru based on all the meta paths can be represented as

C(u) =
!

Pi #P

wPi áCPi (u), (3.59)

wherewPi denotes the weight of the centrality measure based on meta pathPi .
In a similar way, the closeness measure among the user node pairs in the networks can be

represented as

C(u, v) =
!

Pi #P

wPi áCPi (u, v), (3.60)

whereCPi (u, v) represents the closeness, e.g.,common neighboror JaccardÕs coefÞcient, between
usersu andv in the network computed with meta pathPi .

3.6 Network Models

We have covered the basic knowledge about graphs, network measures, network category, and meta
path already in this chapter. Before we end this chapter, we would like to introduce several models
proposed for networks speciÞcally. To model the link formation process in online social networks,
several different models have been introduced, which can simulate how these networks are formed
about the users. In this part, we will discuss several well-known network models, and analyze
the properties, like degree distribution, clustering coefÞcient, and average path length, of networks
generated by these models.
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3.6.1 Random Graph Model

In the random graph model [14], the links among the nodes are assumed to be formed randomly,
and each link will form with an equal chance. Based on such a simple assumption, the random graph
model greatly simpliÞes the process of link formation in the real-world networks. Several different
random graph models have been proposed already, and in this part, we will use the random graph
model proposed by Gilbert [17] and Solomonoff and Rapoport [49] as an example.

In the random graph model, given a Þxed number of nodes, e.g.,n, the links among these nodes are
formed independently with probabilityp. Formally, we denote the graph formed by following such a
process asG(n, p) .

Theorem 3.3 In graphG(n, p) , the number of links is not certain and the expected link number is
1
2

-n
2

.
p (if the links are undirected).

Proof We can represent the link number in the formed graph asm, and we have

m=
1
2

!

u,v#V,u-= v

p((u, v)) " 1+ (1) p((u, v))) á0

=
1
2

!

u,v#V,u-= v

p((u, v))

=
1
2

/
n
2

0
p. (3.61)

Meanwhile, given a graphG(n, p) , we can also infer the probability of formingm links in G(n, p)
according to the following theorem.

Theorem 3.4 In graphG(n, p) , the probability of formingm links is
- (n

2)
2
2

.
pm(1 ) p)

(n
2)
2 ) m.

Proof In graphG(n, p) , there exist(
n
2)
2 potential links to be formed among thesen nodes. Among

these potential links, the probabilities that 0! m ! (n
2)
2 of them are formed and the remaining are not

formed can be denoted aspm and(1 ) p)
(n
2)
2 ) m, respectively. Therefore, the Þnal probability thatm

out of these(n
2)
2 potential links are formed can be represented as

P (m) =
/ (n

2)
2
2

0
pm(1 ) p)

(n
2)
2 ) m. (3.62)

Theorem 3.5 In graphG(n, p) , the expected degree of nodes is(n ) 1)p .

Proof For a nodeu in graphG(n, p) , it can be connected with the remainingn ) 1 nodes all with
probabilityp. Therefore, the expected degree of the nodeu in G(n, p) can be represented as

E(D(u)) =
!

v#V\{ u}

p á1 + (1 ) p) á0

= (n ) 1)p. (3.63)
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Theorem 3.6 In graphG(n, p) , the probability that a node has a degree ofd is
-n) 1

d

.
pd(1) p)n) 1) d.

Proof Among thesen ) 1 potential neighbors of a given node, e.g.,u, the node has
-n) 1

d

.
different

choices to selectd neighbors foru to get connected with. Meanwhile, the probability of merely
forming links with these selectedd neighbors ispd(1 ) p)n) 1) d. In other words, the probability
for a nodeu to have degreed will be

P (D(u) = d) =
/

n ) 1
d

0
pd(1 ) p)n) 1) d. (3.64)

Theorem 3.7 The global clustering coefÞcient of a random graphG(n, p) is p.

Proof According to the deÞnition of clustering coefÞcient, we have

C(G(n, p)) =
|T |
|P|

, (3.65)

where setT denotes the node triples which form triangles and setP denotes the node triples forming
a path of length 2.

In the random graphG(n, p) , given three nodesu, v, w # V, the probability that they will form
a pathu ) v ) w (whereu andw can be either connected or unconnected) isp2. Meanwhile, the
probability that these three nodes will form a triangle will bep3. Therefore, we have the sizes of sets
T andP will be

"
u,v,w#V,u-= v-= w p3 and

"
u,v,w#V,u-= v-= w p2, respectively, and the global clustering

coefÞcient is

C(G(n, p)) =

"
u,v,w#V,u-= v-= w p3

"
u,v,w#V,u-= v-= w p2 = p. (3.66)

Theorem 3.8 In graphG(n, p) , given two nodesu, v # V, the probability that there exists a path of
lengthk connectingu andv is

-n) 2
k) 1

.
pk.

Proof Betweenu andv, if there exists a path of lengthk connecting them, we can denote such a path
asP = u * u1 * á á á , uk) 1 * v, where the intermediate nodesu1, u2, . . . , uk) 1 # V\{ u, v}.
There exist

-n) 2
k) 1

.
different choices of thesek ) 1 nodes. Meanwhile, among thesek ) 1 selected

nodes, the probability that they will form a path connectingu andv will be pk. Therefore, we have
the probability that there exists a path of lengthk connecting nodesu andv can be represented as

P (u, v, k) =
/

n ) 2
k ) 1

0
pk. (3.67)

Given the node numbern, some properties of the random graphG(n, p) will change as parameter
p increases from 0 to 1. In the case thatp = 0, the random graphG(n, 0) will only involve n isolated
nodes without any connections. In such a graph, the graph diameter will be 0 and the size of the largest
connected component will contain merely 1 node and the average path length is 0 as no path exists
among these nodes. Asp increases, some links will be formed among the nodes, and the diameter of
the graphG(n, p) will increase which can also be greater than 1. At the same time, the size of the
largest component increases, while the average path length will also increase and can be greater than
1. Meanwhile, in the case thatp = 1, the graph will be a complete graph involvingn nodes andn(n) 1)

2
links with diameter 1, where all the nodes will be incorporated into one single connected component.
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All the nodes will be connected, and the average path length inG(n, 1) will be 1. Formally, the point
where the diameter increases Þrst and starts to shrink is called thephase transition[9] point.

Theorem 3.9 The phase transition happens atp = 1
n) 1 in the random graph model.

Proof The proof of the above theorem is left as an exercise for the readers.

In the random graph model, the formation of all the links is assumed to be independent with
identical probabilities. However, in the real-world social networks, such an assumption cannot hold.
For instance, in the socialization among users, people tend to form a small community involving
connections with a very limited number of people, like friends, family members, and colleagues. Many
other models, like thesmall-world model[28,39,58] can be used to model the formation process of
such a phenomenon better.

3.6.2 Preferential Attachment Model

When making friends, generally the people with a large neighborhood can attract the connections
more easily. For instance, in the real-world online social networks, the celebrities, like the politicians
and super stars, are well known and they are usually among the top candidates that we choose to
follow. A well-established method to model such an observation in network formation is called the
preferential attachmentmodel [4].

In thepreferential attachmentmodel, at the very beginning, there existn0 node in the network and
new nodes will be added to form connections with these existing nodes. The new node will connected
n ! n0 other existing nodes. Formally, we can represent the degrees of nodes in the existing graph,
e.g.,u, asD(u) , and new nodes are more likely to establish connections with the active nodes, i.e.,
those with a large degree. The probability for a new node to get connected withu can be represented
asP (u) = D(u)"

v#V D(v) .

Theorem 3.10 The degree distribution of the graph generated by the preferential attachment model
follows the power-law distribution with an exponentb = 3.

Proof According to the introduction, the probability for the newly added node to connected with an
existing nodeu is

P (u) =
D(u)

"
v#V D(v)

. (3.68)

Meanwhile, at each stept, the expected increase ofuÕs degree is proportional toD(u) , which can
be modeled with a mean-Þeld setting,

dD(u)
dt

= nP (u)

=
nD(u)

"
v#V D(v)

=
nD(u)

2nt

=
D(u)

2t
. (3.69)
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In each step,n links will be added, and aftert steps, the total node degree will be equal to"
v#V D(v) = 2nt. By solving such a partial differential equation, we can get

D(u) = n
/

t
tu

0 1
2

, (3.70)

wheretu denotes the step thatu is added into the network.
The probability thatD(u) is less thand can be represented as

P (D(u) < d) = P
/

tu >
n2t
d2

0
= 1 ) P

/
tu !

n2t
d2

0
. (3.71)

If we assume thattu 5 Uniform(0, t), we have

P (D(u) < d) = 1 ) P
/

tu !
n2t
d2

0
= 1 )

n2

d2

1
n0 + t

. (3.72)

Let the node degree distribution density function to beP (D) , we have

P (d) =
+P (D(u) < d)

+d
=

2n2t
d3(t + n0)

6 t*7
2n2

d3 . (3.73)

Theorem 3.11 Based on the preferential attachment model, by using the mean-Þeld analysis, the
expected clustering coefÞcient of the generated network is

C =
n0 ) 1

8
(ln t)2

t
. (3.74)

Theorem 3.12 Based on the preferential attachment model, the average path length of nodes in the
generated network is

l 6
ln |V|

ln(ln(|V|))
. (3.75)

The proofs of the above two theorems are out of the scope of this book, which will not be introduced
here. For the readers who are interested in the proof, please refer to [65].

3.7 Summary

In this chapter, we provided an overview about the essential knowledge of online social networks,
which can generally be represented as graphs involving nodes and connections among the nodes.
Some basic information about graphs were provided at the beginning of this chapter, covering
the different graph representation methods, e.g., adjacency matrix and adjacency list, and graph
connectivity concepts, e.g., adjacent neighbors, incident links, walk, trail, tour, path, cycle, as well
as node reachability and connect component.

We introduced the various measures for networks in this chapter, including degree, centrality,
closeness, transitivity, and social balance. We talked about the node degree concept as well as the node
degree distribution, which provide the basic information about the network connectivity structures. To
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122 3 Social Network Overview

denote the importance of node roles in the network, several different node centrality measures were
introduced. The closeness between the node pairs in the networks can be computed with various
closeness measures based on the local network structures, global paths, and random walks. We
introduced the concepts of social transitivity, clustering coefÞcient, and social balance to analyze
various social connection-based network properties.

Depending on the network structures and the involved information, the networks could be divided
into various categories, e.g., homogeneous network, heterogeneous network, and aligned hetero-
geneous networks. The representative examples of homogeneous networks include the friendship
network, computer network, and company organizational chart; the examples of heterogeneous
networks cover the online social network, bibliographic network, and movie knowledge library, while
the aligned heterogeneous networks concept provides the opportunity to model the information across
multi-platforms.

To depict the diverse information inside the networks, meta path can be a very useful methods,
which can outline the potential connections among the nodes. In the provided deÞnition of the meta
path concept based on the network schema, meta paths can be represented as the sequences of node
types connected by the link types. Besides the meta paths within one single heterogeneous network,
we also introduced the meta path across heterogeneous networks via the anchor meta path. Various
network measures, e.g., degree, centrality, and closeness, were deÞned based on the meta path concept
as well.

We concluded this chapter with several network models, including the random graph model
and the preferential attachment model. A brief introduction and analysis about these two models
were provided, which can also be applied to study various social network learning problems to be
introduced in the following chapters as well.

3.8 Bibliography Notes

Studying online social networks and other related network structured data have been one of the most
important research topics in the academia of machine learning and data mining in recent years, since
lots of real-world data can be modeled as the networks [40]. There exist some survey articles on
social networks [21], heterogeneous information networks [48,51], and aligned social networks [66]
published in recent years already, which can serve as the road map to study these related areas for the
readers.

If the readers are interested in learning more knowledge about graph theory, you are very
recommended to read the textbook ÒGraph Theory and Complex Networks: An IntroductionÓ [55],
which is well-written and well-organized book and covers a very broad topic about graphs. The recent
ÒSocial Media Mining: An IntroductionÓ textbook [65] also provides a brief introduction to the graph
related essential background knowledge, and the readers can take a look at that book as well.

Node degree distribution usually follows the power-law distribution [13], where the majority of the
nodes only have a very small degree, while a very small number of the nodes can have a very large
degree instead. Node centrality metric can measure the importance of nodes based on their positions
inside the network, and a systematic overview of existing centrality measures is available in [11]. As
to the node closeness, the readers can take a look at the recent survey article [67], which introduces
various closeness measures as potential link predictors. The network transitivity, clustering coefÞcient,
and social balance concepts are covered in [19,20,57], respectively.

A comprehensive survey about the network categories and existing network mining problems has
been provided in [66], which also covers one section on network fusion and learning speciÞcally.
For the heterogeneous information network research works, the readers are suggested to read the

!"#$%&''()'*%+,-./*
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lecture synthesis book [51], which covers the ranking, search, classiÞcation, and clustering problems
on heterogeneous information networks. About the aligned heterogeneous social network alignment
and mining problems, the readers are suggested to read the latest survey paper [48], which covers the
alignment, link prediction, clustering, information diffusion, and embedding problems.

The meta path concept was initially introduced by Sun et al. in [53], and lately extended by
Zhang et al. to the cross-network scenario in [73], which serves as an important tool for handling the
heterogeneous network structures. Based on the assumptions that networks are generated randomly,
the random graph models [14,17,49] can depict the generation process of graphs and certain properties
that these generated graphs can have. Meanwhile, the preferential attachment model can depict the
addition of new nodes into graphs, whose detailed description is available in [4].

3.9 Exercises

1. (Easy) Please compute thediameterof the graph shown in Fig.3.23, and provide the maximum
shortest path.

2. (Easy) Please compute thebetweenness centralityand thenormalized betweenness centralityof
all the nodes in the input graph shown in Fig.3.23.

3. (Easy) Please draw thedegree distributionplot for the graph shown in Fig.3.23.
4. (Easy) Please compute theclosenessscores for all potential node pairs in Fig.3.23 based on

common neighbor, JaccardÕs coefÞcient, andAdamic/Adar, respectively.
5. (Medium) Besides the heterogeneous network examples provided in this chapter, please think

about some other data in the real world, which can be represented as aheterogeneous network.
Please also provide itsnetwork schema, and list somemeta pathexamples based on the schema.

6. (Medium) Based on the network schema, we can deÞne a large number of meta paths. However,
in many applications, extremely long meta paths (e.g., longer than 10) are not very useful. Please
think why and write down the potential reasons.

7. (Medium) In Sect.3.3.4.2, we show that theclustering coefÞcientequals to

CC =
Number of triangles" 6

|P2|
. (3.76)

Please also prove that the following equation also holds for computing the networkclustering
coefÞcient:

CC =
Number of triangles" 6

Number of connected triples of nodes
. (3.77)

8. (Hard) Please try to prove Theorem3.9regarding thephase transition pointin therandom graph
model.

Fig. 3.23 An input graph
example

n1 n2

n3

n4

n5
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124 3 Social Network Overview

9. (Hard) Please prove that if a Markov chain isirreducibleandaperiodicthen the largest eigenvalue
of the transition matrixP will be equal to 1 and all the other eigenvalues will be strictly less than
1, as introduced in Sect.3.3.3.3.

10. (Hard) Please try to prove Theorems3.11and3.12about thepreferential attachment model.
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