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Social Network Overview 3

3.1 Overview

Online social networks (OSNs) denote the online platforms that are used by people to build social
connections with the other people, who may share similar personal or career interests, backgrounds,
or real-life connections. Online social networking sites vary a lot and there exist a large number
of online social sites of different categories, includimgline sharing sitesonline publishing sites

online networking sitesonline messaging siteand online collaborating sitesEach category of

these online social networks can provide specibc featured services for the customers. For instance,
Facebook allows users to socialize with each other via making friends, posting text, sharing photos and
videos; Twitter focuses on providing micro-blogging services for users to write/read the latest news
and messages; Foursquare is a location-based social network offering location-oriented services; and
Instagram is a photo and video sharing social site among friends or to the public. To enjoy different
kinds of social network services simultaneously, users nowadays are usually involved in multiple
online social sites at the same time, in each of which they will all form social connections and generate
social information.

Generally, online social networks can be represented as graphs in mathematics. Besides the
users, there usually exist many other types of information entities, like posts, photos, videos,
and comments, generated by usersO online social activities. Information entities in online social
networks are extensively connected, and the connections among different types of nodes usually have
different physical meanings. The diverse nodes and connections render online social network to be
a very complex graph structure. Meanwhile, depending on the categories of information entities and
connections involved, the online social networks can be divided into different typekolikegeneous
network[48], bipartite networl{65], andheterogeneous netwofk1]. To model the phenomenon that
users are involved in multiple networks, a new concept calheditiple aligned heterogeneous social
network® P9, 71673] has been proposed in recent years.

Different online social networks are usually of different characteristics, which can be quantibed
with some network measures formally. Users in online social networks can have different numbers
of connections, which can be quantibed as the nsele degreg2, 8] mathematically. User nodes
of a larger degree will be more important (in terms of social connections) generally. A more formal
concept indicating the node importance is called ibde centrality{11], which can be quantibed
with many different measures. Connections are very important for online social networks, and node
connection measures quantifying the linking behaviors of nodes in the networks are of great interests.
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Based on the connections among nodes, the social closeness measures between pairs of nodes can
be calculated, where user nodes who frequently interact with each other will have a larger closeness
score. As to the local social connection patters, they may also follow the social balance theory, e.g.,
Ofriends of my friend are my friends.O

For the networks with simple structures, like the homogeneous networks merely involving users
and friendship links, the social patterns are usually easy to study. However, for the networks with
complex structures, like the heterogeneous networks, the nodes can be connected by different types of
links sequentially, which are of different physical meanings. One general technique for heterogeneous
network studies isr@eta patld b3, 73], which specibcally depicts certain link sequences connecting
the nodes based on the network schema. The meta path concept can also be extendaditipline
aligned social networkcenario 29,73, which can connect the nodes across different social networks.
The machine learning approaches introduced in the previous chapter are very general learning models,
which take the feature representation data as the input and output the predicted labels of the data
instances. There actually also exist some learning algorithms proposed for the network structured
data specibcally, like theandom walkapproach 36).

In this chapter, we will provide the dePnitions of some important concepts that are useful for the
social network studies, including the basic graph related concepts, and some advanced social network
concepts, likemeta path[53, 73]. A clear categorization of the network types will be provided, and
some network measures will be introduced to illustrate the properties of the networks. Finally, an
introduction about some network-based models will be provided. These concepts, network categories,
network measures, and approaches will be frequently used and mentioned in the following chapters
of this book.

3.2  Graph Essentials

In mathematics and computer science, the online social networks are generally represented as
graphs g0], where the information entities are denoted as the nodes and the connections among
the information entities are represented as the links. In this section, we will provide some basic
introductory knowledge about graph, including its representations and the connectivity properties.

3.2.1 Graph Representations

Graphs can be represented in different forms, like a traditional graph depPnition involving nodes and
links, anadjacency matrixndicating the connectivity among nodesljacency liseandlink list.

Debpnition 3.1 (Graph) Formally, a graph can be representedzas (V, E), whereV denotes the
set of nodes ank represents the set of links in the graph

Generally, node is the basic entity unit in graphs, which can represent different types of information
entities when using the graph debnition to represent social networks. For instance, in online social
networks, a node can denote a user, a post, a comment, and a photo. The formal representation of the
node se¥ can be denoted as

V ={v1,V2,...,Vn}, (3.1
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3.2 Graph Essentials 79

wherev; (1! i ! n)represents a single node in the graph and the node set size (i.e., the size of the
graph) is|V| = n.

Meanwhile, the different kinds of connections among the information entities are represented
as the links in the graphs, which bear various physical meanings. For instance, in online social
networks, the links among users can denote their friend/follow relationships, the links between users
and posts denote the post-writing action, and the links between posts and spatial O(latitude, longitude)O
coordinate pairs denote the check-ins attached to the posts. Formally, the set of links in the network
can be represented as

E={en,e,...,en} 3.2

whereg = (Vo,vp) (1! j ! m)denotes alink/node pair in the graph. The size of the link set in the
network can be represented|& = m.

Besides the aforementioned regular graph debnition, a graph can also be represented as an
adjacency matrixwhich indicates the connectivity among the nodes.

DePnition 3.2 (Adjacency Matrix) Given a graptG = (V, E), we can represent its corresponding
adjacency matrix as a binary matrix = {0, 1}™ ", where the rows and columns of the matrix
correspond to the nodes @ and entryA(i,j) = 1ifflink (vi,vj) # E.

The graph debnition and its adjacency matrix representation actually have equivalent representation
capacity, and the transformation between which can be achieved very easily. Various properties of the
graphs can also be revealed by their adjacency matrices as well. For instance, if a graph has a very
small number of connections compared with the number of nodes in it, the corresponding adjacency
matrix of the graph will be very sparsdd]. Meanwhile, if the nodes in the graph actually form
several communities where the nodes in each community tend to have dense connections compared
with those outside the communities, the corresponding graph adjacency matrix will have a lower rank
[47].

Besides theadjacency matrixthe other graph representations include adjacency list. Let set
P(ui) ={ujly #V,(ui,uj) # E} $ V denote the neighbors that usgrconnects to. The adjacency
list representation of grap@ can be represented §8;, ! (U i)}y #v.

Example 3.1For instance, given a graph illustrated in Rdla, we can represent the graph as

G=(V,E), (3.3)

N1 N2 Ns N4 Ns Node |Adjacency List
nnjoj1(1/1]0 ni | nz ns ng
n11/0}1(0]|1 n2 ni Nz ns
na 1 1 0 0 1 ns N1 N2 nNs
na|1,/0]0|0]|1 4 e

n nz n3 n
e 0]1]1]10 v
A B ¢

Fig. 3.1 An example of different graph representationa) Graph; ) adjacency matrix;d) adjacency list)
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where the node seV = {ni,ny n3, ng ns} contains bve nodes and the link sBt =
{(n1,n2),(n1,n3),(n1,Nn4),(n2,n3),(n2 ns), (N3, Ns),(ng,Ns)} covers seven links. In the graph,
there are bve different nod€s1, N2, n3, ng, ns}, where they are connected by seven links. In the
graph, all the nodes are connected with three other nodes, exgetich is connected tao; andns
only. We show its adjacency matrix and adjacency list representations iB.Hgc, respectively. For
any connected node pairs in the graph, the corresponding entry in the matrix will be blled with value
1; otherwise they have value 0 instead. For instance,(linkns) connects nodes, andns. In the
adjacency matrix, thé2nd, 3rd) entry and thg3rd, 2nd) are both blled with value 1. The graph is
also represented as an adjacency list as shown irBHigy. For each node in the graph, we provide a
list of nodes connected with the nodes. For instance, ngde& connected with nodas;, ny, andns
simultaneously, which will form the adjacency list of nauge

3.2.2 Connectivity in Graphs

Connectivity[8] is an important property of graphs, where nodes are connected with each other via
either direct connections or paths consisting of a sequence of links. Formally, given aGyeamh

a noden in the graph, the set of nodes that are adjacent o the graph are called thadjacent
neighborsof n in the graphG.

Debpnition 3.3 (Adjacent Neighbor) Given a graptG = (V, E), theadjacent neighborsf noden
in G can be represented b&) = {n’fn”% V & (n,n*% # E}.

Adjacent neighboset is an important concept in social network studies. For instance, given a social
network, theadjacent neighboset of a user denote the online friends that the user is connected to,
which is very useful for analyzing the socialization patterns and preference of users in the social
network.

Meanwhile, given a node in a networkG, we can call the set of links incident toin the graph
as theincident linksof noden.

Debpnition 3.4 (Incident Link) Given a graplG = (V, E) and a node # V, the set oincident link
set ofn in G can be represented 48) ={ele# E&' n"% V,(n,n%} = €}.

Furthermore, we can also debne iheident relationship®etween two links. Formally, given two
links (a, b) and(c, d) in graphG, (a, b) is said to be incident t¢c,d) iff a=c( a=d ( b= c(
b = d, i.e., they share a common node. Based on this dePnition, we can debne the conwejks of
path trail, tour, andcycleof graphG as follows:

¥ Walk: Formally, awalk can be denoted as a sequence of nadesy, ..., nk from setV, where
there exists a link between any sequential pairs of nodes in the graph. For any three sequential
nodes in the sequence, e.gi, nj+1, Nj+2, the links(n;, nj+1) and(nj+1, Nj+2) areincidentto
each other sharing a common nagle 1. Furthermore, if the ending node is the same as the
starting noden; in the walk, then it will be called aclosed walk otherwise, it is called aopen
walk The length of the walk is formally dePned as the number of links involved in the walk. For
instance, sequencg, no, ..., Nk forms a walk of lengttk ) 1.

¥ Trail : A trail denotes avalk in the graphG, where all the links are distinct. By traveling along
atrail, each link in thetrail can be visited once, but the nodes can be visited multiple times. The
shortestrail in graphG can be just one link in the graph.
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¥ Tour: A closed trail(i.e., the starting and ending nodes of traél are the same) is calledtaur.

¥ Path: Given awalk in the graphG, if all the nodes and links in thevalk are distinct, thevalk will
be apathin the graph. Apathis also atrail in the graph.

¥ Cycle A closed pathis debPned as eyclein graphs. Acycleis also a special type abur.

To help explain the above concepts, we also provide an example as follows, which liatslkhe
trail, tour, path, andcycleinstances from the input graph.

Example 3.2For instance, based on the graph illustrated in &@.the node sequences

1, N2, N3, Ns, Ng, N1, N20 is avalk of length 6,
M1, N2, N3, ng, 40 is drail of length 4,

M1, N2, ns, ng, n10 is d@our of length 4,

M1, n3, ns, n20 is gathof length 3,

1, No, N3, N5, N4, N10 is aycleof length 5

agrwbdPE

in the graph, respectively.

The above concepts can help correlate the nodes in the graphs which are not directly connected
with each other.

Debpnition 3.5 (Reachable)Formally, given two nodes; andn; in the graphG, n; is said to be
reachablefrom n; iff there is apathfrom n; to n;.

For a subset of nodes, which aeachablefrom each other, they together with the links among
them will form aconnected componeint the graph.

DePnition 3.6 (Connected Component)Given a graplG = (V, E), the subgraplé”= (V?E% is
said to be a connected componentofff V¥*$ V, E®$ E, and for any pair of nodes M”they are
reachablevia the links inE”

Example 3.3For instance, based on the input graph illustrated in 3R).the subgraphG” =
({n1, n2, N4, ns}, {(n1,N2), (N2, Nns), (N4, ns), (N1, N4)}) will be aconnected componenf the input
graph. Meanwhile, considering that all the nodes in the networkearehableto each other, and the
original network itself is also aonnected componeattually.

Fig. 3.2 Aninput graph
example
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82 3 Social Network Overview

Based on the graph links there may exist multiplpathsof different lengths connecting a certain
pair of nodes (e.gnj, nj ). Meanwhile, thepathof the shortest length can be of great importance and
has concrete applications in many research problemstréflec route planning6]. Formally, such a
pathis also named as thghortest pattin graphs.

Debnition 3.7 (Shortest Path) Given a pair of nodesi,nj # V in the graphG, the set ofpaths

connectingn; andn; based orG can be represented &s in which one of the shortest lengths is
called theshortest pattbetweem; andn; :

SP(n,ni) = min|p], 3.4
(n,nj) g;lplpl (3.4)

where|p| denotes the length of path

The shortest pattbetween different node pairs in a graph can be of different lengths, where the
longestshortest pattbetween nodes in gragh is also debned as tlitameterof the graph.

Debpnition 3.8 (Graph Diameter) Formally, given a graplG, the diameterof graph G can be
represented as

Diamete(G) = max SP(n,n;). (3.5)
ni,nj #V

Example 3.4For instance, based on the graph illustrated in &ig.the shortest patrbetween (1)
nodesn; andn is 1 *  nyO (of length 1), and (2) nodas andng is O, * ns*  nyO of length 2
(or@y* ng* ng0). For any two nodes selected from the graph, we observe thsdtdtiest path
length between them are no greater than 2, i.e.difwneterof the graph is 2.

33 Network Measures

The networks are usually of different structures and will have different properties, which can be
indicated by various measures about either the nodes, links, or the overall network structure. In this
part, we will introduce a number of measures about the networks, includindetjree[2, 8] and
centrality [11] about nodessimilarity [67] about node pairs (i.e., the links), and tiensitivity [19]
andsocial balancg20,57] about the network structures.

3.3.1 Degree

Degree|[2, 8] can effectively indicate the number of connections associated with nodes in graphs,
which is a very important node measure. In this part, we will introducentite degre€oncept and
thenode degree distributiof?] in graphs.

3.3.1.1 Node Degree

Given an undirected netwoi® = (V, E), the node degree denotes the number of edges incident to
the nodes, whose formal depnition is provided as follows.
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Debpnition 3.9 (Degree) The degreeof nodeu in an undirected networlks = (V, E) denotes the
number of links incident to it, i.,ed(u) = |{ (u,v)|v # V, (u,v) # E}|.

In an undirected network, each link will be incident to two nodes, and the total node degree of a
network will always be an even number. Furthermore, as to the specibc numbers of the degrees, we
have the following theorem.

Theorem 3.1 Given an undirected netwoi® = (V, E), the total number of node degrees equal to
twice the number of links in the network, i.e.,
1
d(u) = 2|E|. (3.6)
u#Vv

Proof In network G, the total node degree can be represented gg, d(u). The removal of link
(u,v) # E, will lower down the degree.of nodasandv by 1, respectively. The total node degree
after removing link(u, v) will be equalto 4, d(u)) 2. After removing all the links (i.e|E| links)
from the network, the total node degree will be reduced to 0 as all the nodes are isolated without any
connections. Therefore, ,, d(u)) 2|E| = 0, and we have

I

d(u) = 2|E|. (3.7)
u#Vv

In the case that links in the networks are directed, the node degree concept will be further rebned
into node in-degred;, andnode out-degredyyt, which denotes the number of links coming into the
nodes and those going out from the nodes, respectively.

Theorem 3.2 Given a directed networks = (V, E), the total number of node in-degree and out-
degree are both equal to the number of nodes in the network, i.e.,
! !
din(u) = dout(u) = | El. (3.8)
u#Vv u#v

Proof Similarly, we can represent the total node in-degree and out-degree of neGvak
aeyv din(u) and 4y dout(u), respectively. From networts, the removal of each linku,v) # E
will decrease the out-degree afand in-degree of/ by 1. Therefore, after the removal of link
(u,v), the new total node in-degree and out-degree of netv@nill be ., din(u) ) 1 and
uiv dout(U) ) 1, respectively. After removing all the links B the node in-degree and out-degree
will be decreased to 0, and all.the nodes will become isolated without any connections. In other words,
we have 4, din(u) )| El= 4y dout(u) )| E| = 0, which implies that
! !
din(u) = dout(u) = | El. (3.9)
u#Vv u#v
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3.3.1.2 Degree Distribution

Node degree is an important property about the nodes, while the distribution of the node degrees
displays an important property of the whole network instead. Given a node degrealyaleecan
represent the proportion of nodes with degueses

[{vlv # V,d(v) = d}

d) =
P(d) Vi

(3.10)

where the numerator denotes the number of nodes with degree
All the potential degree values of nodes in the network can be representedas get(u)|+u #
V}. Therefore, the node degrees together with the corresponding proportions will be represented as a
tuple sef{(d, P (d))}q#p , which can be represented as a distribution plot with degrees asdRis
and the proportions as tlyeaxis.

Example 3.5For instance, given an undirected network shown in Fi@.there exist bve nodes
N1, N2, N3, Na, N5 With degregs 33,03, & 3, sggpectively. Therefore, the node degree and proportion

tuples can be represented a2, % . 3 ‘—5‘ . We can represent the degree distribution in Big.

where majority of the nodes have degree 3 (the largest node degree in the network) and a small
proportion of nodes have degree 2 (the smallest node degree in the network).

Such a degree distribution about the toy example shown irBRgs not common in the real-world
social networks. In many of the cases, most of the users are regular users with a limited number of
friends online (i.e., a small degree), and a small number of celebrities can have a large number of
friends (i.e., a large degree).

Example 3.6In Fig.3.4, we show the degree distribution plots of two crawled data sets about the
Foursquare and Twitter online social networks, where each of them contains about 5000 users.
According to the plots, we observe that the user fraction generally drops as the node degree increases
in both Foursquare and Twitter. Among all the users, most of the users in both Foursquare and Twitter
have a very small degree (less than 10). Compared with Foursquare, users in Twitter have more dense
connections and tend to have larger degrees. For instance, the fraction of users with small degrees in
Twitter is less than that in Foursquare (i.e., the red dots are below the blue dots for small degrees),
while the Twitter user fractions of larger degrees are above those of Foursquare (i.e., the right part of
the plot). According to the plot, there also exists one user in the Twitter network with a degree greater

Fig. 3.3 Degree 1.0
distribution of the example
network 0.8 ®
%)
5 0.6 1
£
o
Q.
S 0.4 1
o
0.2 1 [
0.0 T T T
0 1 2 3 4

Degrees
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Fig. 3.4 Degree — T Ttt‘
distribution of the 101 o, ) witter !
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than 1000, i.e., the rightmost red dot, whose is usually a celebrity with a great number of followers in
the networks.

3.3.2 Centrality

The conceptentrality [11] dePnes how important a node is in the network. To quantify the node
importance in the networks, different kinds of metrics can be applied to debPne theemidality,
which will be introduced in this part.

3.3.2.1 Degree Centrality

In the real-world online social networks, the users with lots of connections (i.e., large degrees) tend to
be important, as their roles are recognized by other users via the connections with them. Therefore, the
node importance can be quantibed as the node degrees. Given an undirected Gettvedegree-

based centrality11, 65] of a nodeu in the network can be debned as

Cq(u) = d(u). (3.11)

All the nodes inG can be ordered by theitegree-based centralityvhere the nodes with larger
degrees will be more important compared with other nodes with smaller degrees. Meanwhile, given
a directed networlG, the node centrality can be debned as either their in-degrees, out-degrees, or
in-degrees together with out-degrees, which can be formally represented as follows:

Cin(u) = din(u), (3.12)
Cout(U) = dout(u), (3.13)
Cinjout (U) = din(u) + dout(u). (3.14)

Example 3.7For instance in FigB.5 we show a graph with bve nodes and bve undirected links.
Based on thelegree centralityamong all the nodes in the graph, natehas the largest centrality
score, i.e., 3, compared with the remaining nodes. Nedeas the smallest centrality score, i.e., 1,
and the remaining nodes all have a centrality score of 2.
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Fig. 3.5 Aninput graph
example

3.3.2.2 Normalized Degree Centrality
Generally, thelegree-based centrality different networks is usually of different scale. For example,
the Facebook network is of a much larger scale compared with other social networks, like Twitter and
Foursquare, and theeegree-based centraliy Facebook is usually much larger than that in Twitter
and Foursquare. To ensure the comparability otigree-based centraligcross different networks,
one method is to normalize all the centrality measures to a common value interval. Here, different
numbers can be used as the denominator for centrality rescaling, emgatimaeal degreesum degrege
andmaximum degreavhich will bring about differenhormalized degree centralitpeasures.

The maximal number of nodes each node can be connected within a netwW¥iK) isl, which
can be applied to rescale thegree centralityo the rangd0, 1]. It actually helps debne thmaximal
degree-based normalized degree centrality

C(u)
vVI) 1

Cmax(u) = (3.15)
Another way to do the normalization will be to debne the centrality as the ratio of the degrees with
regard to the total degree in the networks, i.e. gt degree-based normalized degree centrality

Cu _ C

Csum(u) = = = — .
s wyd(WV) 2" El

(3.16)

Generally, in the online social networks, few nodes can achieve a degree with pélged or
2"| E|. In other words, these two normalized node degree centrality measure values are highly to be
concentrated in a very narrow regipd, #] (# < 1 and can be a very small number), where #he
will also be different for different online social networks and violate the comparability objective. To
resolve such a problem, we propose to normalize the measures with maximum node degree instead,
which debnes thmaximum degree-based normalized degree centrality

C(u)

Crmaximur{U) = maxay d(v)’

(3.17)
3.3.2.3 Eigen-Centrality

In the degree centralitydepbnition, the users having more friends are assumed to be more important
by default. However, in the real world, it can be not the case. Instead of having lots of online friends,
users having more important friends will be more importdntother words, the userséntrality is
determined by their online friendséntrality[46], i.e.,
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C(u) = C(v), (3.18)

V#! (u)

LA

where set (u) ={v|v#V&(u,Vv) # E} denotes the set of online neighbors of usén the network
G and$ is a constant scalar.

By organizing the social connections among users in the network as the social adjacency matrix
A # {0, VI VI we can rewrite the above equation as follows:

$c= A ¢, (3.19)

where vectorc = [ C(u),C(uz),...,C(uy)]’ contains all the centrality values of users in the
network.

The above equation indicates that the centrality vector is actually a eigenvector of the social
adjacency matriXA' , whose corresponding eigenvaluefisHowever, given a matriA' , it will
have multiple eigenvectors and eigenvalues. Usually, we prefer to use the positive values to debne
the centrality measure. According to the PerronbBFrobenius thed@mgiven a matrix, there always
exists a non-negative eigenvector of the matrix, which corresponds to the largest eigenvalue of
Therefore, we will use the eigenvector corresponding to the largest eigenvalue of mataxdebne
theeigen-centrality{11,46)].

Example 3.8For example, given an undirected graph shown,n Figa, we can represent the
0,1,11,0
1,0,1,0,1F
adjacency matrix of the undirected input graphfas k 1,1, 0, 0, 11 . By decomposing the matrix,
1,0,0,0, 1
0,1,1,10
we can achieve the eigenvalues of matixo be[2.856,) 2.177,1.429" 10 16, 0.322) 1.0]. Its
largest eigenvalue is 56, and the corresponding eigenvector can be represented as

*
0.456
0.491%
c= {0491t (3.20)
0.319
0.456

which denotes theentrality scoresichieved by the nodes in the graph.

Fig. 3.6 Adirected input
graph example &)
Undirected graph )
directed graph
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In other words, nodes; andng actually have the largest centrality score among all the nodes in
the graph, which is @91; the next group will be nodes andns with a centrality score @56; and
nodeny has the lowest centrality score, which iS09.

Example 3.91n Fig.3.6b, we show an example of a directed input graph with different conngctions.
0,0,14,10
1,0,1,1,1%

According to the graph structure, we can represent the graph adjacency matrix g9, 0, 0, 0, 0F .
0,0,0,0,0
0,0,0,1,0

By decomposing the matrix, we can achieve its eigenvalues to be 0 for all the nodes in the graph, which

may make theigen-centralityfail to work in handling the directed graphs.

3.3.2.4 Katz Centrality

As shown in the previous example, when the networks are directedigée-centraliymeasure may
suffer from some serious problems. To overcome such a problem, a new centrality measkia¢z the
centrality[11], has been proposed, which is debned as follows:

c= #aA' c+ %al, (3.21)

where parameter$ and%denote the weights of theigen-centralityand the bias term, respectively.
In the case that matriX) #38A: is invertible, theKatz centralityvector can be formally represented as

c= %a(l) #aA ) tal (3.22)

To ensure the invertibility of matrik) # &A: , the choice of parametércan be a little bit tricky.
Smaller# tends to unify theKatz centralityof all the nodes in the network closer to the valué/of
while larger# will reduce the effectiveness of the bias term. In practice, gsi—ax is usually selected,

where$max denotes the maximum eigenvalue of mathix.

Example 3.10For instance, given the directed graph shown in Eifp, by assigning the parameters
# = %= 0.5, we have th&atz centralityvector as follows:
i *
1.0
1.875}¢
c=k 051, (3.23)
0.5
0.75

among which node; has the largedfatz centrality(i.e., 1875) in the input graph.

3.3.2.5 PageRank Centrality

Both eigen centralityand Katz centralitytreat all the neighbor nodes in graphs equally when
calculating the centrality scores for the target node. However, in the real world, the impacts of the
neighbor nodes are usually different in determining usersO centrality score. For example, in online
social networks, users like to get connected with celebrities, and these celebrities will be connected
with lots of people even though they may not necessary know each other in person. Usually, the
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celebrities are very important users in online social networks, and they have aéavyality score
compared against the other users. However, for the users who are connected with these celebrities,
we cannot say that they are also important as well. To consider such a phenomenon, a pagerank-
based centrality measure has been introduced to provide different neighbors with different weights
(determined by their degrees). Formally, fegerank centrality12] of useru can be debned as

! Cp (V)

SW=#a )

vi#! (u)

+ %, (3.24)

where the effects frormOs neighbors, like # ! (u) , are weighted b)ﬁ\%ﬂ' Here, the subscrigt
denotes th@pagerankbasedcentrality score.

In other words, for the neighbors with large degrees, their impacts will be penalized in the
centralityscore computation, while people with a small degree will have a greater impadhstead.
Formally, the above equation can be rewritten as follows:

c= #aA D lc+ %al, (3.25)
where matrixD = diag(dout(U1), dout(U2), - .., dout(Upv))) is a diagonal matrix with the node out-
degrees on its diagonal. In the case that matrizesid(l ) #A' D) 1) are both invertible, we can
have thepagerank centralityector to be

c= %a(l) #aA D 1) Lal (3.26)

Parametett can be selected with similar methods as introduced after3E2R)(

Example 3.11For example, we can take the directed graph shown in3faas the input graph, and
its adjacency matrixogether with theout-degreediagonal matrix can be represented as

' * ' *
0,0,1,1,0 2,0,0,0,0
1,0,1,1,1% 0,4,0,0,0%
A=§00001%,D=£00100f. (3.27)
0,0,1,0,0 0,0,0,1,0
0,0,0,1,0 0,0,0,0,1

Fig. 3.7 Aninput graph @
for pagerank centrality
calculation @
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By assigningt = %= 0.5, we can compute thgagerank centralitgcores of nodes in the graph to be

' *
0.563
05 %
c= %a(l) #aA D 1) tal= L 1.406f . (3.28)
1.969
0.563

Among all the nodes)4 has the largegtagerank centralityscore compared against the other nodes,
andn;y has the lowegpagerank centralitygcore on the other hand.

3.3.2.6 Betweenness Centrality

The centrality measures aforementioned are mostly debPned based on the neighborhood information
for the nodes. Another way to debne the centrality measure is based on their positions connecting
nodes in the networks, which is called the nb@é¢weenness centraliff1, 16] measure. Generally, if

a nodeu effectively joins the connection paths among nodes in the network, then its position will be
more important. Formally, theetweenness centralitjeasure of node can be debned as

! |Pst(u)]
|Ps tl

Co(u) = , (3.29)

st#V,s=t=v

wherePs t(u) denotes the set @hortest path&etween nodes andt via u in the network, andPs ¢

represents the set of ahortest pathsonnectings andt.

_ Foranoday, it can achieve the maximutretween centralityf it appears on all the shortest paths
ie., 'Plﬁ;‘s(t”)' = 1 of all the node pairs in the network, like the central node in the star-structured

graph. Formally, in such a case given a network with nodé/séhe maximumbetween centrality

nodeu achieves can be represented as

! |Ps,t(u)]
|Ps.tl

Co'™(u)

s,t#V,s=t=v
!

= 1
s,t#V,s=t=v
/ 0

, VD) 1
2

(VD) Davl) 2. (3.30)

To ensure thdetweenness closenargasure in different networks are comparable, one effective
way will be to rescale thbetweenness centrality range0, 1] with the maximurbetween centrality
in the network.
[Pst(u)]
Cnyb(u) _  st#Vs=t=v ||§>;t|
Ci™u) (V) Davl) 2

Cny b(u) =

(3.31)

To compute the shortest path between all pairs of nodes in a @aph(V, E), algorithms, like
the FloydbWarshall algorithm, can be used withOgiiV|3) time cost. In the exercises, we will have
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an example about tHeetweenness centraljtgnd the readers can try to compute the node centrality
scores according to the above depbnitions.

3.3.3 Closeness

Via the connections, nodes in networks will be closely correlated with each other and have different
closeness scores with each other. In this part, we will introduce several frequentlglasedess

[67] measures for the node pairs in networks. To illustrate the measures more clearly, we will use the
social networks as an example, where the nodes denote the users and links represent the friendship
connections.

3.3.3.1 Local Structure-Based Closeness Measures

Many node closeness measures can calculate the proximity among user nodes with the social network
local structure information, like the shared common neighbors. In this part, we will introduce a number
of local network structure-based user node closeness metrics as follows, which can effectively measure
the social proximity scores among the users.

¥ Reciprocity: For the social networks involving directed links among the nodes (i.e., the link
denotes thdollow relationship), given a pair of nodesandv in the network, there could exist
a link between them inside the networks. For example, if ustilows v in the network, there
will exist a directed linku * v (i.e., (u,Vv)) pointing from usewu to userv. When measuring the
closeness between userandv, the connected user pairs are generally much closer to each other
compared against the disconnected ones. Viewed in this perspectivilliéws v (or v follows
u), such a link will indicate the strong closeness between these two users. Meanwhile, in the real-
world online social networks, most users tend to follow the celebrities. The follow link between
regular users and the celebrities may not necessarily denote they are close in the network, like the
celebrities may not even know his/her followers.
One measure that can denote the closeness between two usetsaedy., in the social networks
is thereciprocal links[22]. Given that useu follows v in the network (i.e.{u,Vv) exists in the
network), ifv also followsu back (i.e.,(v, u) also exists), them andv tend to be very close to
each other. Here, linkv, u) will be called thereciprocal link of (u, v). Thereciprocal linkscan
also correctly measure the closeness between regular users and celebrities in social networks. For
instance, if regular usar follows a celebrityv in a social network, ang also followsu via a
reciprocal link it can indicate thati andv tend to know each other and should be close to each
other. Such a measure will also work for two regular users or two celebrity users.
Formally, thereciprocity closenessieasure between userg&ndv can be represented as

Cr(u,v) = I ((u,v) # E& (v,u) # E), (3.32)

whereE denotes the link set in the social network drig returns 1 if the condition can hold.
Besides measuring the closeness between pairs of user nhodes;iitecity can also be applied
to measure the closeness of the whole netv@rkvhich can be represented as

u,v#V,u=v CR(U, V)

RO = —Vivh D
u,v#V,u:vI ((U-V) #E& (V, U) # E)
VIVD) 1) (3.33)
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Thereciprocity of a network denotes among all the potential user pairs in the network, how many
percentages of them have the bi-directional follow links. For a network with a laeggrocity

score, the connections among users in the network will be stronger, which also indicates closer
relationships among the internal nodes.

Common Neighbor. Reciprocity is a closeness measure based on the connections between
pairwise user nodes in the network. Actually, besides such pairwise links, via the connections
with the other neighbors, many other closeness measures can be debned for user pairs in social
networks as well, like theommon neighbofCN) [35,67] closeness measure.

Given two usersl, v # V in an undirected social network,ufandv share lots of common friends,

it will indicate that they are highly likely to be close friends and may know each other. Formally,
according to the introduction provided in the previous sections, we can formally represent the set
of online friends whom useng, v have in the network as selt§u) and! (v) , respectively. The
common neighbocloseness measure between usesadv can be formally represented as

Cen(u,v) =1 (u) . (V) | (3.34)

For the directed networks, we can debne several more rebPned common neighbor measures, like
common in-neighbors (i.e., the common followers), common out-neighbors (i.e., the common
followees), common all-neighbors (i.e., the common connected neighbors regardless of the link
directions), since the links among users will have a specibc direction.

JaccardOs CoefbcienConsidering thaCN (u, v) can be a very large value merely because the

two users both have a lot of neighbors rather than they are strongly related to each other. In other
words, the common neighbor measure will have some problems when being used to compute
the closeness between certain active users, e.g., the celebrities sharing lots of common fans.
Furthermore, the common neighbor measure can neither be used to compare the closeness among
the user pairs in different networks, due to the different network scales. One way to overcome these
aforementioned problems will be to normalize the common neighbor measures with the usersO
degrees, which will introduce the followintpccardOs coefbcigat, 67] measure.

Given the two users andv in an undirected network, we can representiaecardOs coefbcient
closeness measure between them as

MO
HONSIOR

where the denominator denotes the number of users connected toueither Therefore, for the
celebrities, users, or networks with a relatively large scales, the user node closeness will be rescaled
by assigning them with a larger penalty.

In the case that the networks are directed, different other types of directed versions of JaccardOs
coefbcient measures can be debned, just like the directadhon neighbomeasures we debne
before. JaccardOs Coefbcient can be treated as a weighted version of common neighbor, where
each shared neighbor is assigned with an identical W?l*ﬁﬁll(—m Many other weights can also

be applied actually, lik Yo |+1| TON used inS¢rensen Indepoq], m used inHub
Promoted IndeX44, mzarm Ty USed in theHub Depressed Indep80], and gty N

the LeichtbHolmebNewman Indé4].

Adamic/Adar: Meanwhile, in measuring the closeness between users, different common users
will play a different role and should have a different weight. To achieve such a goal, a closeness

Cic(u,v) = (3.35)
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measuréddamic/Adar(AA) [ 1,67] index is proposed, which penalizes the shared neighbor nodes
with larger degrees. Formally, the AA index between useasdv can be debned as

! 1

- 3.36
log [t (W) | (3:36)

Caa(u,v) =
w#(!(u) . (V)

For each of the common neighbarshared byu andv, the weight assigned tw is W in

AA. The shared common neighbors with smaller degrees will play an important role in indicating
the closeness between the user pair. For the directed networks, by considering the link directions,
several directed version of AA can be introduced as well. Besides AA, some other similar measures
have been proposed, which assign the shared common neighbors with a different wei%ﬁke

used in theResource Allocation IndegfRA) [80].

3.3.3.2 Global Path-Based Closeness Measure

In addition to the local network structure-based closeness measures, many other closeness measures
based on paths throughout the network have also been proposed to measure the proximity among the
user nodes.

¥ Shortest Path Generally, the social closeness among users can be measured by the distance among
them in the network structure. Given two users who are far away from each other via all the
potential paths connecting them (or they are isolated without any paths), they will have a very
low closeness score. On the other hand, for the users who are directly connected via a link or a path
of a very short length, they should be closer to each other compared with the isolated users. Based
on such an intuition, we can debne the closeness measure based on the distarsteoofetsigpath
[67] connecting users in the network:

Csp(u,v) = min{|p[}psp,, (3.37)

whereP, , represents the set of paths connecting usensdv inside the network, anjgh| denotes
the distance of patp.

¥ Katz: Besides the shortest path, all the potential paths connecting user pairs in the networks
can indicate their social closeness. Meanwhile, longer paths will show weaker closeness, and
shorter paths denote stronger closeness Kiiecloseness measurgd, 67] can integrate all these
paths together to debPne the closeness scores among the users in the networks. Forrdally, the
closeness between userandv can be debned as

!max
CraU,V) = WP, I, (3.38)
=1

wherelnax denotes the longest path connectingndyv, Pl'“, denotes the set of paths of length
connectingu andv in the network. Parameté6# [0, 1] is a regularizer term. Normally, smaller
%favors shorter paths & can decay very quickly dsincreases whefiis small, in which case

the Katzmeasure will behave like the closeness measures based on the local neighbors introduced
before.
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3.3.3.3 Random Walk-Based Closeness Measure
In addition to the closeness measures that can be calculated from the network structure directly, there
also exist another category of closeness measures that can calculate the closeness scores among users
based omandom walk{36, 67]. In this part, we will introduce the concept aindom walkbrst, and
provide the introduction to several closeness measures based on it, indhiiding time[37, 67],
commute tim§33,67], andcosine similarity[23,67].

Formally, given a networl = (V, E), let matrixA # {0, 1}VI'1 VI be the adjacency matrix of
networkG, where entryA(i,j) = 1iff link (uj,u;j) # E. The normalized matrix af\ by rows can
be represented @ = D) A, where diagonal matri® of A has valueD(i,i) = i A(i,j) on
its diagonal andP (i,j) denotes the probability of stepping on nagefrom nodeu; during the walk
process. Let vectod®)(i) denote the probabilities that a random walker is located at usennct/
at time& Then such a probability vector at tinge+ 1 will be updated as follows:

!
xX& Dy = x&))P,i). (3.39)
i
In other words, the updating equation of vectowill be as follows, and such an updating process
will continue until convergence, i.e.,

Updating Equationx®* 9 = p» x(&), (3.40)

Convergence Equatior®* V) = x(&), (3.41)
which will lead to the bnal stationary distribution veckoto be
X=P X (3.42)

The above equation denotes that the Pnal stationary probability distribution weotaandom
walk is actually an eigenvector of matri corresponding to eigenvalue 1. Some existing works
[15] have pointed out that if a Markov chainiiseducible andaperiodicthen the largest eigenvalue
of the transition matriXP: will be equal to 1 and all the other eigenvalues will be strictly less than
1. In addition, in such a condition, there will exist a unique stationary distribution which is vector
x obtained at convergence of the updating equations. Here, we will not cover the proof to the above
statement, which will be left as an exercise for the readers at the end of this chapter.

¥ Hitting Time : Let a variablex®) = u denote that a random walker is at nadat step&, and the
hitting time-based closeness measure between wsanslv can be represented as:

Cut(u,v) = E{&x&) = v&x@ = uy), (3.43)

whereE(d denotes the expectation of the variable.

Considering a random walker can readinom u via different paths. The above equation denotes
the expected number of steps to reacfrom u, which is also called thaverage hitting time
[37,67]. Generally, close friends in the online social networks will have a smadlage hitting
time
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Another way to debne thgtting timebetween nodes andv is to count the minimum number
of steps needed to reagtfrom u, which can be represented as:

Con1 (U, v) = min{&x® = v & x©@ = u}, (3.44)

which is also called theninimum hitting timemeasure.

¥ Commute Time: According to the above debnition bitting time we can see that the measure is
actually asymmetric, i.eCyt(u,v) = Cyt(Vv,Uu), especially when the networks are directed.
Such an asymmetric property will cause some problems when applyindittieg time in
measuring the closeness among users in the real-world social networks. To overcome such a
problem, some new measures, liG@mmute Timg33, 67], have been proposed, which counts
thehitting timebetween user pairs from both of the directions, i.e.,

Cer(u,v) = Cyr(u,v) + Cyr(Vv, ). (3.45)

Formally, based on the adjacency mattixwe can dePne its corresponding Laplace matrix as
L = D) A (Disadiagonal matrix). The pseudo-inverse matrix afan be represented ks, and
thecommute timéor user pairgu;, uj ) can be represented as

Cer(ui,uj) = 2[E[aL (i)
+L G.0) ) 2L (i,j). (3.46)

The proof to the above equation will not be provided here, and more detailed information for the
proof is available in§7].

¥ Cosine Similarity: With the pseudo-inverse matrlx , we can introduce a vectay, = (L )%aJ
and vectorg, is a binary vector of Os except the entries corresponding to noakich is blled
with 1. According to existing works, the closeness between usarglv can be debned based on
thecosine similarity{23,67] measure of vectorg, andz, as follows:

Zi] Zy

Gl = G )

(3.47)

Furthermore, based on the pseudo-inverse matrix the above cosine similarity can be
represented as

Ccs(ui,uj) = & L
L (i,i) aL (,))

These above closeness measures are all debned based on the nagidem walk model.

Meanwhile, in recent years, several varismbhdom walkmodels have been proposed, which allow

the walker to jump back to the starting point with a certain chance. Based on the debnition of random

walk, if the walker is allowed to return to the starting point with a probability)otlwherec # [0, 1],

then the new random walk method is formally dePnedadom walk with restartRWR) [41], whose

updating equation is shown as follows:

(3.48)

x& D = P x&+ (1) o)y, (3.49)
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where vectomf,&+ D denotes the probability of the random walker at all the nodes in the network

starting fromu initially.
By keeping updating the vectcxf,&+ D until convergence, if matrigl ) cP' ) is invertible, we can
have the stationary distribution vector of the RWR model to be

Xa= (1) c)(1) cP ) le, (3.50)

Furthermore, the closeness measure between userpainsl v with the RWR model can be
represented as

CRWR(U!V) = XU(V)! (351)

where entry, (v) denotes the stationary probability of walking franto v based on the RWR model.

3.3.4 Transitivity and Social Balance

The links in online social networks actually create various relationships among users. In this part,
we will analyze several important properties about social networks based on the connections, which
includesocial transitivity[19], clustering coefbcienf], andsocial balancg20,57], respectively.

3.3.4.1 Social Transitivity
In discrete mathematics, a relati®hon the domairD is a transitive relation iffru, v,w # D the
following equation can hold:

R(u,v) & R(v,w) * R(u,w). (3.52)

The transitive relation can also be used to describe the social connections among users in online
social networks. In the real world, there is a social phenomenon that

Friends of my friend can also be my friend.

Such a social phenomenon has been adopted in many friend recommender systems in online social
networks for either recommendation or candidate pruning. Given threewsers # V in an online
social network, if userg, v are friendsy, w are friends (i.e., linkgu, v), (v,w) # E), andu, w also
happen to be friends in the network, then we can observe a transitive friend relation among the three
users. These three users together with the friendship connections among them will form a triangle.
Therefore, to measure the transitivity of a network, the number of triangles existing in the network
can be an important signal.

3.3.4.2 Clustering Coefbcient
For a network with denser connections, there tend to be more triangles formed by the users in the
network. We can measure how close a network compared to a complete network (i.e., a network with
all node pairs connected) with ttidustering coefbcientoncept. Formally, the networdustering
coefbcien{5] denotes among any three user nodes in the network, given that there exist two links
connecting them already, how many of them will form triangles.

Formally, let seP? = { (u,v,w) |u,v,w # V & (u,v) # E& (v,w) # E} denote the node triples
forming paths of length 2, anl = { (u,v,w) |u,v,w # V & (u,v) # E& (v,w) # E& (u,w) # E}
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Fig. 3.8 Aninput graph @
for network clustering @

coefbcient calculation

represent the set of node triples forming a triangle. We can represetititering coefbcierdf the
network structure as follows:

CC= . (3.53)

Since in each triangle, there exist six different closed paths of length 2 and 2 different connected
node triples in a path of length 2, the above equation can also be rewritten as follows:

Number of triangle$ 6
P2
Number of triangle$ 6

= , 3.54
Number of connected triples of nhodes? ( )

CC=

which can make the counting works simpler.

Example 3.12In Fig. 3.8, we show an input graph with four nodes and four links. Among all these
nodes, there exists one single triangle structure, i.e., the triangle invalyjmg, andns. Meanwhile,
there are bve different paths of length 2, itg.)) n2) ng,n2) n4) n1,Nng) ny) nz,n3) ni) ny, and
n3) ni) ng. Therefore, according to the above debnition, we can calculatubiering coefbcient
score of the network to bg—5 = 2.
3.3.4.3 Social Balance
Another concept strongly correlated withnsitivity is social balancg20,57], which denotes whether
a triangle social structure is balanced or not especialsigned network§32, 77]. A signed network
denotes a social network, where the links are associated with polarities (either positive or negative).
Depending on the specibc network settings, the polarities attached to the links will have different
physical meanings, likeustvs.distrust[63], friend vs.enemy[59], andgood attitudevs.bad attitude
[64].

Thesocial balancegheory describes the consistency of the signed connections among users. Some
informal cases ofocial balancedstructures in networks include:

Friends of my friend can be my friend,

Friends of my enemy can be my enemy,

Enemies of my friend can be my enemy,
Enemies of my enemies can be my friend.

Given three users,v,w # V in a network, we can represent the signs of relationships among
them assy v, Sy, w ands, w, respectively. For instance, signy = + 1 denotes that usetsandv are
friends, while signs,y =) 1 denotes that usevsandv are enemies. The relationships among these
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social balance theory Structure + +

+

Unbalanced
Structure
+
(n2)-(ng) (n2)-

three users in the above four cases will form Ibladanced structuresand all the remaining structures
among these three users are all callebalanced structure

Fig. 3.9 Examples of
structures based on the Balanced @
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Example 3.13For instance, in Fig3.9, we provide an example about thalancedandunbalanced
social structures formed by three users (ng, h2, andnz). Among three users in a triangle, there can
exist eight different social structure formed by them with signed links, which are shown B.&itn
these eight cases, four of them @@anced(as shown at the top) and four arebalancedas shown

at the bottom).

Actually, there exists a very simple method to determine whether a social struchalamsedor
unbalancedBased on the sign notations, the triangle formed by usarsw is abalanced structure
iff

Suv asyw asyw 0 O. (3.55)

Otherwise, the structure is said to lebalanced

3.4  Network Categories

The network concept introduced in the previous section can be used to model various types of network
structured datasets available in the real world, includiniine social network§38], bibliographical
networkg[52], transportation network§6], and computer networkgLQ]. For instance, when we use

the concept to debne tlmnline social networksthose various types of information entities in the
social networks can be represented as the nodes, while the connections among the information entities
are denoted as the links. Different online social networks are usually of different properties, and the
corresponding network representations will have different kinds of characteristics as well.

For example, in some online social networks, the social connections among users can be (1) either
directed (e.g., the social connections are the uni-directional follow links) or undirected (e.g., the
social connections denote the bi-directional friendship links); (2) eitvedghted(e.g., users have
different closeness scores with their friendsyioweightedi.e., no closeness information is indicated
in debning the social links); and (3) eithsigned (e.g., friendship links have different physical
meanings actually and the link polarities denote different social attitudeshsigned(no social
attitude information is provided in debning the social links).

Given a networkG = (V, E), the nodes and links involved in it usually belong to different
categories. Formally, we can represent the sets of node and link types involved in the network as
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N andR, respectively. Meanwhile, the corresponding network debnition can be updated by adding
the mappings indicating the node and link type information.

Debnition 3.10 (Network) Formally, a network structured data can be representeds as
(V,E,',() ,whereV, E are the sets of nodes and links in the network, and mappingg * N,

( : E* R project the nodes and links to their specibc types, respectively. In many cases, the
mappings , ( are omitted assuming that the node and link types are known by default.

In this section, depending on the categories of information involved in the networks, we propose to
categorize the network data into three groupemogeneous network48], heterogeneous networks
[51], andmultiple aligned heterogeneous netwofRS, 7167 3], which will be introduced as follows,
respectively.

3.4.1 Homogeneous Network

Debpnition 3.11 (Homogeneous Network)or a networlG = (V, E,', () ,ifthere exists one single
type of nodes and one single type of links in the network (ji¢),= | R| = 1), then the network is
called ahomogeneous netwark

Many different types of network structures can be represented abaim®geneous networks
actually, like online social network8§] involving users and friendship links only, company internal
organizational network74, 76, 78] involving employees and the management relationships, and
computer networksl[0] involving PCs and the internet connectiorfomogeneous networkse one
of the simplest network structures, analysis of which can provide many fundamental knowledge about
networks with more complex structures. In the following part, we will introduce several common
homogeneous netwostructures brst.

3.4.1.1 Friendship Networks

Friendship networks one of the most common homogeneous social network structures, and they can
be represented as the graph= (V, E) debned before, whei¢ represents the set of individuals
while E denotes the set of social relationships among these individuals. Depending on whether the
links in G are directed or undirected, the social links can denote eithdotiogv links or friendship

links among the individuals. Given an individual# V in an undirected friendship social network,

the set of individuals connected tocan be represented as the friends of us@r the networkG,
denoted as(u) $ V ={v|(u,v) # E}. The number of friends that userhas in the network is also
called the degree of nodg i.e.,|! (u) |.

Meanwhile, in a directed networks, the set of individuals followed by (i.e., ! out(u)
{v|(u,v) # E}) are called the followees af; and the set of individuals that follow (i.e.,! j,(u) =
{v|(v,u) # E}) are called the followers af. The number of users who followis called the in-degree
of u, and the number of users followed bys called the out-degree ofin the network. For the users
with large out-degrees, they are called thubs[27] in the network; while those with large in-degrees,
they are called thauthorities[27] in the network.

Example 3.14In Fig.3.10 we provide two examples dfiendship networkswvhere plot (a) involves
an undirected network and plot (b) contains a directed network. The links in plot (a) denote the
friendship links, while those in plot (b) represent the follow links. Among all the users in plot (b),
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we can identify onauthority useri.e., the one in blue square box with lots of in-links, and bob
user, i.e., the one in red square box with many out-links.

3.4.1.2 Computer Network

For the computer networks, like a local area network (LAN) or a wide area network (WAN), involving

a set of computers and the access relationships among the computers, they can also be represented
as the homogeneous networks as well. Generally, in a computer web, depending on the roles, the
computers in the web network can serve as either the servers or the PCs. The PCs are the regular
computers used by the end users, while the servers usually host some websites. The PCs can access the
servers by visiting the websites or connecting with them via secure shell (SSH). If we donOt consider
the access relationships among the PCs and servers, respectively, then the computers together with
their access relationships will formbépartite network{65].

DebPnition 3.12 (Bipartite Computer Network) Formally, abipartite networkcan be represented as
G = (VL !/ VR, E), whereV_ andVr denote the nodes on the left and right sides in the network and
E$ VL " Vg represents the access relationships between nodes on the left and right sides.

Example 3.15An example of aipartite computer networls shown in Fig3.11a, which involve bve
different nodes (two on the left and three on the right) and six links, where all the nodes on the left
side are connected with the nodes on the right side. According to the above depPnitioipatttiée
networkcan be formally represented @s= ({n1, n2}/{ n3, na, ns}, {n1,n2}"{ nz, ng, ns}).
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3.4.1.3 Company Organizational Network

In many cases, the network structure or the sub-network structure of interest is a tree-structured
diagram. Formally, in mathematics and computer scietiee,is a special type of connected graph

with no cycles formed by the nodes. As shown in Bid.1b, for the nodes itrees those with degree

1 are called thdeaf nodeq(i.e., the ones at the bottom) and the remaining ones are datiechal

nodes The tree structured networks have several important properties,dilery tree has at least

one edge and at least two nodesd every tree withn nodes has exactip ) 1 links. We will

not provide the formal proof of these statements here. Tree is an important concept in networks
representations, and many important network structures can be representedesf®rnally, like
thecompany organizational chads discussed irvf, 76, 78].

Debpnition 3.13 (Company Organizational Chart) Formally, a company management structure can
be represented as raoted treeT = (V, E,root), whereV and E denote the employees and
management relationships among the employees in the company.rodé V usually denotes
the CEO of the company.

Example 3.16An example of thecompany organizational chars shown in Fig3.12 As shown in

the bgure, in theompany organizational charall the employees will have their managers except
the CEO (i.e., Adam in the plot). The employees who are not in a management position (i.e., the
leaf nodes) are named as thase employeedifferent from the regular social networks, there
generally exist no cycles in terms of management relationships icotm@any organizational chart

It is very important for companies, as a clear outline of the positions and responsibilities of the
employees can avoid management confusion and chaos. WhatOs morepinghay organizational
chart, employees at higher levels can be connected to multiple lower-level employees, i.e., the
subordinatesat the same time. Meanwhile, each employee at lower levels will be connected to one
single employee at higher level, i.e., theanager In other words, managers can manage multiple
employees simultaneously, while each employee reports to one single manager.

Besides thecompany organizational netwarknany other networks can also be represented as
tree structured diagram, likantologieg 18] outlining the relationships among differecdtegories of
beings and thecascadeg26€] in information diffusion indicating how information propagates from
the source users to the other users in the network.

Fig. 3.12 An example of
company organizational

chart Organizational Chart

‘iAdam

Bob 7 Candyn
%pe\se %ek
e )

o e

David Eli Frank Gale
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3.4.2 Heterogeneous Network

Debpnition 3.14 (Heterogeneous Network)-or a networkG = (V, E,',() , if there exist multiple
types of nodes or links in the network (i.¢N| > 1, or|R| > 1), then the network is called a
heterogeneous network

Most of the network structured data in the real world may contain very complex information
involving multiple types of nodes and connections, which can be represented lastéh@egeneous
networkg[51] formally. Representative examples includeterogeneous social networl9, 54, 73]
involving users, posts, check-ins, words, and timestamps, as well as the friendship links, write
links, and the other links among these nod@bliographic network$52] including authors, papers,
conferences, and the write, cite, and publish-in links among thempaie knowledge libraries
[34] containing movies, casts, reviewers, review comments, as well as the complex links among these
nodes. Many of the concepts introduced before foribeogeneous networkan also be applied to
the heterogeneous networks well.

3.4.2.1 Online Social Networks

The online social network§29, 54, 73] usually allow the users to perform different social activities,
like make friends with other usensrite posts onlineandcheck-in at some placgshich will generate
different kinds of information entities and very complex connections among these information entities.
Formally, anonline social networknvolving these diverse information entities and complex links is
called aheterogeneous social network

Example 3.17In Fig.3.13 we illustrate an example of laeterogeneous social networkormally,
according to the heterogeneous network debnition, it can be represefed €, E) (the mappings

are not provided), where the node $&tan be divided into several subséts= U/ P/ L/ T
representing theiser, post location, andtimestampnodes, respectively. Meanwhile, depending on
the node types that the links are connected to, the linksdan also have different physical meanings
and can be further divided into subsEts Eyu/ Eup/ Eu,/ Ept, which correspond to the friendship
links among users, and the links between users and posts, locations and timestamps, respectively.

In the heterogeneous social networksach node can be connected with a set of nodes belonging
to different categories via various type of connections. For example, given a usaJ, the set of
user node incident ta via the friendship links can be represented as the online friendsid., set
{vlv# U, (u,v) # Eyu}; the set of post node incidenttovia the write links can be represented as the
posts written by, i.e., se{w|w # P, (u,w) # E,p}. Itis very similar for the location and timestamp
nodes as well, from which we can achieve the set of locations visited by users and the collection of
timestamps that the users perform the social actions.

Many interesting research problems have been studied based onlite social networkdlike
friend recommendatiori56, 61, 71, 72], social community detectiof62, 68|, social information
diffusion[26, 75, 76, 79] via the connections among usefsiend recommendatioproblems aim
at recommending online friends for users in the social networks, which can be formulated either
as a ranking problem or as a link prediction probleBommunity detectioproblem focuses on
dividing the users into different social groups, where users who frequently interact with each other
tend to appear in the same growpformation diffusionproblems aim at modeling how information
propagates within the online social networks, and when the users can be activated by certain
information propagated from their friends. These problems mentioned here will also be covered in
the following ChapsrBllin great detail.
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Fig. 3.13 An example of heterogeneous online social network

3.4.2.2 Bibliographic Networks

Another type of heterogeneous network well studied in research is calldibiifegraphic networks

[52], which denote the academic networks depicting the paper authorship, paper citation, and paper
publishing venues. Generally, thébliographic networksnay involve multiple types of information
entities, like authors, papers, conferences/journals, and very complex connections among these
information entities, which can be represented as a heterogeneous network as well.

Example 3.18As shown in Fig3.14 a bibliographic networkcan be represented as gra@h=

(V, E), whereV = A/ P/ V containing the authors, papers, and venues (i.e., conferences or journals),
andE= Ep/ Ep / By involving the authorship links between authors and papers, citation links
among the papers, and publishing links between papers and venues. In the examplé3]MUNA

[29], and MFC [79] are the model names proposed by the authors in their papers.

In many cases, the information entities imidliographic networkmay also be associated with a
set of attributes indicating their properties, like expertise/skills about the authors, the title, abstract,
keywords, categories of papers, and the year, categories (like data mining, machine learning) of the
publication venues. Via the papers, the authors can get correlated with each other. For instance, given
a papelp # P, we can obtain the set of authors who are involved in wripngs{ala # A, (a,p) #
Esp}. For any author pairay, ap # {ala # A, (a,p) # Eap}, they will be the co-authors on paper
p. Similarly, from thebibliographic networkwe can also obtain the set of papers published at certain
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Fig. 3.14 An example of Publishing
heterogeneous
bibliographic network
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venuev # V as{p|p # P, (p,Vv) # Eyv}. Many other interesting information, like authors who have
ever published at a similar conference and conferences frequently participated in by certain authors,
can be analyzed with the meta path concept to be introduced later as well.

Many interesting problems can be studied in Hikliographic networkslike co-author recom-
mendation $2], rankings of authors, papers and venu&d,[ project team formationd0, 78]. Co-
author recommendation is an important problem for academia, as it will help researchers bnd their
collaborators to carry out the projects. The researchers, papers, and publishing venues are usually of
different quality, some of which are highly ranked but some are of lower ranks. An effective ranking
of the researchers, papers, and venues will make it easier for people to Pnd qualibed collaborators,
related works, and publishing venues. Meanwhile, in the real world, great researchers tend to write
innovative research papers and get them published at top-tier publishing venues. The ranking problems
of the authors, papers, and venues are usually strongly correlated. To Pnish certain research projects,
the project leader may need to build a team of researchers with different kinds of required skills. Team
formation problems aim at identifying the team members for projects. In this book, we will mainly
focus on thesocial networksand these aforementioned problems for bibliographic networks will not
be covered in this book. However, the readers are recommended to read the referred articles, if you
are interested in these problems.

3.4.2.3 Movie Knowledge Libraries

For the online movie review sites, like IMDBand Doubarf, they involve very complex information

and can be represented as heterogeneous networks a34keB¢nerally, in these sites, users can post
review comments and ratings for the movies to express their favor regarding some movies. Meanwhile,
for the movies, we can obtain the cast involved in producing the movies, like the writers, directors,

Thttp:/www.imdb.com/
2https://ww.douban.com/
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Fig. 3.15 An example of User Review Movie Cast
heterogeneous movie
network
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actors, and actress. A set of attributes can be obtained for the movies and casts as well, like movie
title, story outline, movie genres, and cast proble information.

Example 3.19In Fig.3.15 we illustrate an example of tHeeterogeneous movie knowledge library

which can be represented as a gr&pk (V, E), where the node s& = M / C/ U/ P involves

the movie nodes, cast nodes, user nodes and review post nodes, andtink &gtc/ Eyp / Em

contains the links between movies and casts, users, and review posts, and those between the review
posts and movies.

Via the heterogeneous links in these onlimovie knowledge librarie$34], the nodes are
extensively connected with each other and lots of interesting knowledge can be discovered from
the onlineonline knowledge librariesFor example, given a movie # M , we can obtain the set
of reviews posted for it as sgp|p # P, (p, m) # Epm}, based on the review comments and ratings
contained by these review posts, we can analyze the sentiment and favor of audiences about the movie.

Based on the onlinenovie knowledge librariegesearch problems likemovie recommendation
[7], movie box-ofbce analys[8, 34], and movie planning problenii34, 45] can be studied. The
movie recommendation problems aim at recommending movies for users based on their movie
rating historical records, and inferring their potential ratings for the recommended movies. From
the investorsO perspective, they generally want to invest their money on promising movies that can
achieve a good box-ofpbce, while the movie box-ofbce depends on various factors, like movie genre,
movie storyline, and movie cast. Given a movie basic proble information, inferring the potential box-
ofbce can be obtained by them is an important problem. The movie planning problem is studying the
correlation between movie proble information and box-ofbce in a reverse direction, which aims at
designing the optimal movie conbgurations within the provided budget to achieve the largest movie
box-ofpce.
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3.4.3 Aligned Heterogeneous Networks

In the real world, about the same information entities, e.g., social media users, researchers in
academia, and the imported foreign movies, a large amount of information can actually be collected
from various sources. These sources are usually of different varieties, like Facebook and Twitter, data
mining and machine learning research areas, the USA and China online movie libraries. Generally,
these multiple information sources sharing some common information entities can be modeled as
multiple aligned heterogeneous netwofRS, 68,72, 73].

Debpnition 3.15 (Multiple Aligned Heterogeneous Networks)Formally, themultiple aligned het-
erogeneous networkavolving n networks can be debned @s= (G®,G@, ... .cM) (A12,
AL AM LNy where the networksG(,G@ ... ,GM denote thesen heterogeneous
networks andA (12 A3 A 1) represent the sets of undirectachor linksaligning these
networks.

In the above debnition, tlenchor linkg 29, 73] refer to the mappings of information entities across
different sources, which actually correspond to the same information entity in the real world, e.g.,
users shared between online social networks, authors involved in multiple bibliographic networks,
and the common movies shared in different movie libraries. As proposé@8,i6d, 70], anchor links
are usually subject to thene-to-onecardinality constraint, which can be formally debPned as follows.

Debnition 3.16 (Anchor Link) Given two heterogeneous netwo®$) andG(®) which share some
common information entities, the setafichor linksconnectingG® andGU) can be represented as
setAl) = {u®, u)u® # v &ud # v &ul u? denote the same information enjity

Example 3.20In Fig.3.16 we provide an example afhultiple aligned heterogeneous social net-
works which involve two heterogeneous networks Foursquare and Twitter, respectively. Both
Foursquare and Twitter have very complex information, which can both be represented as the
heterogeneous networks. Between these two networks, they share bve common users, who are
connected by the red dashed anchor links across networks.

Anchor linksmainly exist between pairwise networks, when it comes to multiple (more than 2)
aligned networks, there will exist a specibc set of anchor links between any network paiasiChioe
links depict a transitive relationship among the information entities across different networks. Given
three information entitiea), ud | u¥ from networksG® , G0 , andG® respectively, iul) , (_J)
are connected by an anchor link anfa (k) are connected by an anchor link, then the userlpf#w

¥) will be connected by an anchor link by default.

For the information entities which are connected by the anchor links, they are named as the
anchor information entitiedike anchor user$73] in social networksanchor authorsn bibliographic
networksanchor movietn movie knowledge libraries. Meanwhile the remaining information entities
are called themon-anchor information entities

Debnition 3.17 (Anchor Information Entities) Given a pair of heterogeneous netwofg® and
G0) | the anchor linkA (1) aligning them, and the information entity s&t® andV() involved in
them, respectively, the set ahchor information entitiesn G® can be represented &)

W u® # v D 2 vO W u®y # AGD 3. Similarly, we can also represent the set of anchor

information entities it asvd ™ ¢ v0)
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Temporal Activities Temporal Activities

X User Accounts < TNVA
8AM 12PM 4PM 8PM 11PM anChOI’“nkS .
Locations M\ ____________________________ & g Locations
‘ 7re--o__ _locate
Q . check-in friend™ s, \ Q
g - Lot ezt L e L s . oemmee
"“"""“‘-t;heck—ir{— friend \ /\
Q friend [ ‘/follow v ~~.°
----------- L e

% =
- dig \ P

Fig. 3.16 An example of multiple aligned heterogeneous social networks

Debnition 3.18 (Non-anchor Information Entities) Given a pair of heterogeneous netwofk)
andG0) | the anchor link#\ () aligning them, and the information entity s&t® andv{) involved

in them, respectively, the set afon-anchor information entitietn GO can be represented as
VD = @@ 2 vO @ g VO w® WOy # A} = v\ V) g similar
way, we can represent the set of non-anchor information entities in ne®fBrias well, which can
be denoted agl{)

The anchor information entitiesand non-anchor information entitiesoncepts are debPned based
on the provided network pairs, which will be different (e.g., those in netv@tk) as the network
pair changes. For instance, the seanthor information entitieandnon-anchor information entities
in GO between network pair6®) andGU) will be different from those irG" between network
pairsG" andG®. Furthermore, depending on the availabilityasfchor information entitiesind
non-anchor information entitieshe networks can be eith&rlly aligned partially aligned andnon-
aligned respectively.

Debnition 3.19 (Full Alignment) Given a pair of heterogeneous netwofk® andG0) with non-
anchor information entity se¥%)  andv@:{d)  respectivelyG® is said to be fully aligned with
G0 iff Vi3 =1, andG® is said to be fully aligned wittg® iff V) =1.60 andc®
are said to be mutually fully aligned mr(,'c),r(lé) =1& v,ﬁlgé'g) =1.

Network G() is said to be fully aligned with networ&() if the information entities involved in
G® are a subset of those involved®@#) , and vice versa. Networld® andG®) are mutually fully
aligned if the information entities i) andG0) are actually identical. Fully aligned networks may
exist in the real world, but a much common scenario wilplaetial alignmentof networks instead.
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Debnition 3.20 (Partial Alignment) Given a pair of heterogeneous netwof®€) and GU) with
information entity sets/® and V®) and anchor information entity set() and v{t) |
respectively. Networlc®) is partially aligned with networi®) iff V() =18 v0) = V(') i) |
and vice versa. Network® andG® are said to be mutually partially aligned W& = 1 &
VO = v gy 21 g v = O

NetworkG() is said to be partially aligned with netwo@{) if one part of the information entities
in GO are involved inG0) . Bothfull alignmentandpartial alignmentare not symmetric relationships.
In the case that all the information entities@¥) are also involved irG%) while many information
entities inG(@) are not involved irG® , networkG® will be fully aligned withG@) butG® will be
partially aligned withG() instead.

DePnition 3.21 (Non-alignment) Given a pair of heterogeneous netwod andG%) with anchor

information entity sety™)  andv{ () respectively. Network&(® andG() are said to be non-

aligned iff the information entities involved in two networts!) andG0) are totally different, i.e.,
0.0 — 0.0 —

Va 1 andVj 1.

Different from full alignment and partial alignment the non-alignmentis a bi-directional
relationships. In other words, (" is non-aligned withG0) , thenG® will be non-aligned with
GO as well.

Lots of real-world network structures can actually share some common information entities, and
can be represented as theltiple aligned heterogeneous networée will provide several examples
as follows.

3.4.3.1 Multiple Aligned Heterogeneous Online Social Networks

To enjoy different kinds of social network services at the same time, users nowadays are usually
involved in multiple online social networks simultaneously, e.g., Facebook, Twitter, Foursquare, and
Googler. For the online social networks sharing common users, they can be represented as the
multiple aligned heterogeneous online social networks

Example 3.21In Fig.3.16 we have provided an example of two partially aligned heterogeneous
online social networks: Foursquare and Twitter. Both Foursquare and Twitter can provide the
users with different kinds of social network services, like make online friends with other users,
write/like/comment on posts, check-in at some locations, and their online social activities are also
associated with timestamps as well. Many users tend to join in Foursquare and Twitter at the same
time, who are connected by the anchor links in the example.

In each of these twaligned heterogeneous social netwqrige can have more data about the
common users, which provides researchers and practitioners the opportunity to study usersO social
behaviors within these two networks. Moreover, the multiple aligned networks setting also allows the
researchers to carry out a comparative study of users® social behaviors in different networks, which
will provide a more comprehensive understanding about their social preferences and personal social
behaviors.

3.4.3.2 Multiple Aligned Heterogeneous Bibliographic Networks

In the academia, the researchers are usually involved in various interdisciplinary projects and may
collaborate with many researchers from other areas. For instance, the researchers of bioinformatics
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Data Mining Database

Fig. 3.17 An example of multiple aligned heterogeneous bibliographic networks

tend to have background in either computer science or biology; people working on data mining can
publish works in either machine learning, data mining, or database; and the researchers working on
neural networks can be experts on machine learning or neural science. Viewed in such a perspective,
various closely related research areas may share lots of common researchers, and each researcher
can also publish their works in different areas as well. Such complex relationships can be effectively
modeled as thenultiple aligned heterogeneous bibliographic netwdiddnally.

In Fig.3.17, we show an example of two partially aligned heterogeneous bibliographic networks
in data mining and database. Between these two networks, there exist a large number of shared
researchers, like Jiawei Zhang, Philip S. Yu, and Charu C. Aggarwal, who are active in both of these
two areas and have published lots of academic papers in data mining and database conferences, like
KDD, ICDM, SDM and ICDE, SIGMOD, VLDB. These two areas have different focuses in research
actually, where data mining emphasizes more on knowledge discovery, while database is interested in
data storage and management instead. Therefore, the researchers involved in these two areas are not
exactly identical, and the shared researchers are indicated with the anchor links between them.

The multiple aligned heterogeneous bibliographic network setting allows us to study many
interesting problems. In each of the networks, we can analyze the researchersO personal research
interests, their preferred paper topics, frequently published conferences, which will be helpful to
divide them into different research groups. Meanwhile, across the aligned bibliographic network, we
can obtain their activities in different research areas. With the data about them across these different
research domains, we can know their interdisciplinary research interest and activities, and it will
provide extra information for us when studying researchers® personal cross-domain research interest
shift, as well as their research progress in different domains.
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3.4.3.3 Multiple Aligned Heterogeneous Online Movie Knowledge Libraries

To provide the movie related services in many different countries, lotmliie movie knowledge
library [34] exist on the web, like IMDB launched in the USA, Douban launched in China. Nowadays,
to achieve more box-ofbce, the movie import is a common practice between the movie markets in
different countries. A movie can be on show in the USA brst, and then getimported to show in China.
Therefore, the IMDB and Doubasnline movie knowledge librargan share lots of common movies,

and can be modeled as tmultiple aligned heterogeneous online movie knowledge libréoiesally.

Example 3.22In Fig.3.18 we show an example of two partially aligned heterogeneous movie
knowledge libraries in the USA and China: IMDB and Douban. Both IMDB and Douban have a
very large collection of movies either native or imported from other countries. Lots of movies are
very welcome and popular in both the USA and China, and are included in both IMDB and Douban,
which act as the bridges aligning these different libraries together. For instance, in the example, these
three provided movies, i.e., Avatar, Titanic, and The Revenant, exist in both Douban and IMDB, which
make these two movie libraries fully aligned.

Generally, the common movie tend to have identical proble information in different movie
knowledge libraries (can be in different languages), while they can receive the review comments
and rating from the audience in different countries. These review comments and rating data obtained
from different online movie knowledge libraries provide the opportunity to study the preferences of
audiences from different countries about the shared movies. Moreover, many movies will be on show
in the native countries prst, and then get imported by other countries. Before these movies entering
a new market, some prior knowledge about the movies in the original native country is available
already, which will be very useful in scheduling the screenings in other countries, so as to maximize
the revenue for theaters.

IMDB Douban

Fig. 3.18 An example of multiple aligned heterogeneous movie libraries
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3.5 Meta Path

To deal with the social networks, especially those with heterogeneous information, a useful technique
is themeta path52,53, 73]. Meta pathis a concept debned based on the network schema, outlining
the connections among nodes belonging to different categories. For the nodes which are not directly
connected, their relationships can be depicted with the meta path concept. In this part, we will brst
introduce the meta path concept, and then talk about a set of meta paths within, as well as across
real-world heterogeneous social networks.

3.5.1 Network Schema

Given a networlG = (V, E), we can debne its correspondimgtwork schemfb2,53, 73] to describe
the categories of nodes and links involved3n

DePnition 3.22 (Network Schema)Formally, the network schema of netwog& = (V, E,', ()
can be represented 8& = (N, R), whereN andR denote the node type set and link type set of
networkG, respectively.

Network schema provides a meta level description of the network. Meanwhile, if a neBacak
be outlined by the network scherig, G is also called aetwork instancef the network schema. For
a given nodes # V, we can represent its corresponding node tygéas = N # N, and callu as an
instance of node typH, which can also be representedue N for simplicity. Similarly, for a link
(u,Vv), we can denote its link type d§(u,v)) = R # R. To represent that linku, v) is an instance

of the link typeR, we can use the notations like,v) # R, or (u,v) # S )B T for simplicity, where

)1
'(u) = S#N and'(v) = T # N.The inverse relation typR) 1 holds naturally fofT )Ff* S, and
R is generally not equal t&) 1, unlessR is symmetric.

Example 3.23In Fig.3.19 we show the network schema of the heterogeneous social network on the
left. According to the network structure, there exist four different node types, i.e., user, post, time,
location, and four link types, i.e., follow, write, at, check-in at, in the network. These node types and
link types together debne the input network schema.

Meanwhile, in Figs3.20and 3.21, we provide the network schemas of the input heterogeneous
bibliographical network and the heterogeneous movie knowledge library, respectively. According
to the bibliographical network structure, there exist three different node types and three link types,
respectively. The movie knowledge library has a more complex structure, involving bve different
node types and four link types.

3.5.2 Meta Path in Heterogeneous Social Networks

Meta path[52,53,73] is a concept debPned based on the network schema denoting the correlation of
nodes based on the heterogeneous information (i.e., different types of nodes and links) in the networks.
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Fig. 3.20 An example of heterogeneous bibliographical network schema

Debnition 3.23 (Meta Path) A meta pathP debned based on the network schegga= (N, R)

can be represented Bs= N1 )& N )F’széééNk) )% Ny, whereN; # N i #{1,2,...,k} and
Ri#R,i #{1,2...,k) 1}.

Furthermore, depending on the categories of node and link types involved in the meta path, we
can specify the meta path concept into two rePned groupshbkeogeneous meta pafi3] and
heterogeneous meta pdtr3].

R1

Debnition 3.24 (Homogeneous/Heterogeneous Meta Pathet P = Njp )* 2

N2 )*
ally) 1 )?kl*l Nk denote a meta path debned based on the network scBenma (N, R). If

n
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about
\@
s | act-in
d
direct

all the node types and link types involvedinare of the same catego, is called ahomogeneous
meta pathotherwiseP is called aheterogeneous meta path

Fig. 3.21 An example of heterogeneous movie library schema

The meta paths connect any kinds of node type pairs, and specibcally, for the meta paths starting
and ending with the user node types within the same network, such a meta path is cafledidhe
meta pathg73].

Debnition 3.25 (Social Meta Path)Let P = N; )* N, )B*zéééNk) )™ Ny denote a meta path
debned based on the network schédga= (N, R). If the starting and ending node typis andNy
are both the user node tyfde,is called asocial meta path

Users are usually the main focus in social network studies, ansiaitial meta pathsonnecting
the user node type will be frequently used in both research and real-world applications and services.
If all the node types in the meta paths are user node type and the link types are also of an identical
category, then the meta path is callediloenogeneous social meta paithe number of path segments

. . . R

in the meta path is called the meta path length. For instance, the length of mefa patN; )**
Ro, 2 & . .

N2 )*2aaaNk) 1 )3““1 Nk isk) 1. Meta paths can also been concatenated together witiméte

path composition operatdb2,53,73].
. - 1 :|_R:1L lR%,,, 1 RI%)*l 1
DePnition 3.26 (Meta Path Composition) Meta pathsP* = Nj )* N5 )* aaaNy ; ) N
2 2R 2 s a2 T N2
andP“ = Nf)* Nj)* aaaNl) 1))* Nf can be concatenated together to form a longer meta
R! R} R2 R2 R2
pathP = PL12P2= N1 )*aaa))™ NiorN2) )* NZ)¥aaan?g,))* N2 if the ending

node type oP ! is the same as the starting node typddf i.e., N = N12. The new composed meta
path will be of lengthk + 1) 2.
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R Re, 4 £ -
Meta pathP = Nj )* Nz )*¥444Ny) 1 )?k)*l Nk can also been treated as the concatenation
: R R .
of simple meta pathdl; )* Nz, N2 )** Ns, ..., Ny 1 )™ Ny, which can be represented as
P = R12R22aaaRy 1 2 Rk. Here, we use the link type to denote the simplest meta paths of
length 1.

Example 3.24For instance, based on the network schemas shown inFi$.3.20 and3.21, a
group of meta paths can be debned. Here, we can provide a group of them as follows, which mainly
connect the user/author/movie pairs specibcally.

1. Heterogeneous Social Network
foll ) .
¥ Usebﬁ ¥ User (orU * U), which denotes a simplellow meta path.
fall foll
¥ User3% ng User)ﬁ ¥ User (oru 3 U * U), which denotes aommon followemeta
path.
foll I .
¥ User)f H User&% ng User (orU * U 3 U), which denotes aommon followeeneta
path.
¥ User)cﬁECKIn 2 Location f%dﬂn 3t User (orU * L 3 U), which denotes @ommon
location check-imeta path.
2. Heterogeneous Bibliographic Network
¥ Author)\%mice Paper’é"ﬁ'tﬁ User (orA* P 3 A), which denotes ao-authormeta path.
i lish lish i
¥ Author)\%rlgke Paper)%bIs g Venuesoﬁ 'S 3t Paperthj3 Author (orA* P * V 3
P 3 A), which denotes aommon publishing venueeta path.
¥ Author)\%rlske Paper)3"tre Paperﬁ'\ﬁi't)E Author (orA * P * P 3 A), which denotes a

citation meta path.
3. Heterogeneous Movie Library

¥ MovieifflfoﬁIt Reviewiﬁ't)e User)\%rlsce Reviewﬁbo’éJt Movie (orM 3 R3 U* R*

M), which denotes ahared review authometa path.
¥ Movie 3d)re3t Director 3d)reﬁt Movie (orM 3 D * M), which denotes ahared director

meta path.. .
¥ Movied§J Actor £5f Movie (orM 3 A * M), which denotes shared actormeta

path.

Besides these meta paths shown above, many other meta paths can also be debned based on the
network schema structures, which will not be provided here and the readers can try to debPne some
other useful meta paths on your own.

3.5.3 Meta Path Across Aligned Heterogeneous Social Networks

Besides the meta paths within a network, the meta paths can also be debned across multiple aligned
heterogeneous networks via thechor meta patfi73] (or the anchor link type).

DePhnition 3.27 (Anchor Meta Path) Let GV and G(@ be two aligned heterogeneous networks
sharing the common anchor information entity of typed) # N D andN®@ # N @ respectively.
The anchor meta path between the schemas of netv@ksand G(@ can be represented as meta

path) = N FJ"¥ N@ of length 1.
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follow
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write at . e
Post User Time .&'te at

check-in at check-in at

Fig. 3.22 An example of aligned heterogeneous social network schema

Formally, via theanchor meta pathgiven one pair of inpualigned heterogeneous social network
as shown in Fig3.16 we can formally represent the network schemas inFR2 Theanchor meta
pathis the simplest meta path across aligned networks, and a seephetwork meta pathg 3] can
be debned based on the intra-network meta paths and the anchor meta path.

DebPnition 3.28 (Inter-Network Meta Path) Given a meta path* = Nj )31 N2 )32

aaky 1 )§k)*l Nk, * is an inter-network meta pathbetween networksG(® and G@ iff
"'m#{1,2,...,k},Rm = Anchor.

The inter-network meta pathsan be viewed as a composition iotra-network meta pathand
theanchor meta pathAn inter-network meta patlan be a meta path starting with anchor meta
pathfollowed by theintra-network meta pathr those withanchor meta pathg the middle and
starting/ending with thentra-network meta pathslere, we would like to introduce several categories
inter-network meta pathisvolving the anchor meta paths at different positions as follai@k [

¥ (G M @) = G D ,G@), which denotes the set of simpleistter-network meta paths
composed of the anchor meta path only between netw®fksandG?.

¥ (G M GOy = )G D GD)2P(GA), which denotes the set drfiter-network meta paths
starting with anchor meta path and followed by the intra-network meta path in ne@/tk
connected by an anchor meta path between netw®fksandG@.

¥ (G M GO = pM)2)G D, GA), which denotes the set drfiter-network meta paths
starting with the intra-network meta path in netw@/® followed by an anchor meta path between
networksG(Y) andG(.

¥ (G D, cO)=pccD)2) G B, cAD)2pP(GA@), which denotes the set dfter-network meta
pathsstarting and ending with the intra-network meta path in netw#s andG(®, respectively,
connected by an anchor meta path between netw®fksandG(?.

¥ (G M GO = pcM)2)G D, ,cD)2P(GD)2)G @, D), which denotes the set of
inter-network meta pathstarting and ending with node types in netw@ and traverse across
the networks twice via the anchor meta path.

¥ (G M GO = pcM2)G D, @) 2P (GA)2) (G @, cMD)2pP (GD), which denotes the
set ofinter-network meta pathstarting and ending with th@tra-network meta pathm network
G and traverse across the networks twice via the anchor meta path between them.
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Example 3.25Based on the above descriptions, we can also represent several examiples-of
network meta pathacross social networks as follows:

Il
Usef) 3" usef? )ff ¥ Usefd (oru® 4 U@ yYO).
foll fall
Use ) ¥ Usef) F" Usef? 3§ Usef? oru® = U@ 4 U@ 3 YO,
uset® 35" Usef I Use )J'¥ Use (ru®3 UM 4 U@+ UO),

Uset JJFH" 2 Locatiodd $HFH"F Usefd I Usef2 1§'¥  Usef (or U@ *
LO3 u®a y@ y@),

K K K K

Generally, shorter meta paths may convey more concrete physical meanings compared with the
long meta paths. Due to the extensive connections among nodes in networks, extremely long meta
paths will may not be useful, since almost all the node pairs in the network can be connected by
such meta path instances. In the following parts, we will introduce several meta path-based network
measures about node degree, node centrality, and node pair closeness, respectively.

3.5.4 Meta Path-Based Network Measures

The meta path concept introduced above provides a meta level description of information available
within and across networks, and they can be used to compute various node and link measures based
on the heterogeneous social networks. All the degree, centrality, and closeness measures introduced
in the previous subsections are mainly based on the direct social links among users in homogeneous
networks. In this part, we will extend these measures to the multiple aligned heterogeneous networks
scenario based on the meta path concept specibcally.

3.5.4.1 Meta Path-Based Node Degree
Via the meta paths, nodes in the networks which are not directly connected can be extensively
correlated with each other. In this part, we will take the user node as an example, and try to study
how the users are connected with each other via the meta patts{}) e a user set in netwofB(®,
andP be the set of various meta paths starting and ending with the user node type in nétlork
(which can be either intra-network or inter-network meta paths).

For each user pair in netwo&®, e.g.,u,v # U based on one speciPc meta paiht P, we
can denote the set of concrete meta path instances connecimdy as sePy(u, v). The number of
user nodes that is connected with, i.e., its degree, based on metaPath P can be denoted as

|
Dp,(u) = |Pk(u, ). (3.56)
v#U®

Furthermore, for all these meta paths in Betwe can represent the degree vector of usas a
|P|-dimensional degree distribution vector

Dp (U) = [ Dp,(1), D p,(W), .., D pp (W] - (357)

Generally, for these different meta paths in the Bethey are usually of different weights. For
instance, in some scenarios, shorter meta paths can denote stronger connections among users than
longer meta paths; meta paths among the distinguishable node types (i.e., those only a small number
of node types will be connected with them) will represent a more effective correlation than those
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composed of indistinguishable ones (i.e., those all the node types can be connected with them). By
taking the meta path differences into consideration, we can represent the weighted meta path-based
node degree as
!
D) = wp, 4Dp(u), (3.58)
P #P

where vectorfwp,, Wp,, ..., Wpp |’ pup WP, = 1 represents the weight parameters corre-
sponding to the different meta paths.

3.5.4.2 Meta Path-Based Node Centrality and Closeness
Given the user node type and the set of meta p&this G, based on each of the meta path
Pi # P, the connections among users can be organized as homogeneous (weighted}graph
(U, BEp,, wp,), where the link seEp, = {(u,Vv)|u,v # U, Pj(u,v) = 1}. Mappingwp, : B, * R
denotes the weight of links iBp, , wherewp, ((u, v)) = | Pi(u, V)| represents the number of meta path
instances oP; connectingu andv. If we donOt care about the link weights, the weight mapping is
optional in the graph debnition and can be discarded. In other words, based on the meta path concept,
we can transform &eterogeneous social netwoilto a group ofhomogeneous networlsstead,
where the edge weight equals to the meta path instance number.
Based on grapsp, , we can debne theentrality measure of usar # U asCp, (u), which denotes
either degree centrality, eigen-centrality, Katz centrality, pagerank centrality, or betweenness centrality
that we have introduced before. Similar to the meta path-based degree concept introduced before,
different meta path can play a different role in debning the usersO centrality. One way to debne the
centrality measure of userbased on all the meta paths can be represented as
I
C(u) = wp; aCp, (U), (3.59)
Pi#P

wherewp, denotes the weight of the centrality measure based on met&path
In a similar way, the closeness measure among the user node pairs in the networks can be
represented as
!
C(U,V) = WPi éCPI (U!V)v (360)
Pi#P

whereCp, (u, V) represents the closeness, eapmmon neighboor JaccardOs coefbciebetween
usersu andv in the network computed with meta pa#h.

3.6 Network Models

We have covered the basic knowledge about graphs, network measures, network category, and meta
path already in this chapter. Before we end this chapter, we would like to introduce several models
proposed for networks specibcally. To model the link formation process in online social networks,
several different models have been introduced, which can simulate how these networks are formed
about the users. In this part, we will discuss several well-known network models, and analyze
the properties, like degree distribution, clustering coefbcient, and average path length, of networks
generated by these models.
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3.6.1 Random Graph Model

In the random graph model ], the links among the nodes are assumed to be formed randomly,
and each link will form with an equal chance. Based on such a simple assumption, the random graph
model greatly simplibes the process of link formation in the real-world networks. Several different
random graph models have been proposed already, and in this part, we will use the random graph
model proposed by Gilberfl[f] and Solomonoff and Rapopod$] as an example.

In the random graph model, given a bxed number of nodespetpe links among these nodes are
formed independently with probability. Formally, we denote the graph formed by following such a
process a&(n, p) .

Theorem 3.3 In graph G(n, p) , the number of links is not certain and the expected link number is
1 0'p (if the links are undirected).

Proof We can represent the link number in the formed grapimzasnd we have

|
m= 2 p((u,v)) " 1+ (1) p((u,v)) &
u,v#V,u=v
1 !
> p((u,v))
uv#V,u=v

/0

n
5 P (3.61)

|
NI =

Meanwhile, given a grap&(n, p) , we can also infer the probability of formimg links in G(n, p)
according to the following theorem.

- (g) . (0]

Theorem 3.4 In graphG(n, p) , the probability of formingm links is 2 pT(1) p) )™M,

Proof In graphG(n, p), there exist% potential links to be formed among thesenodes. Among
these potential links, the probabilities that Om ! % of them are formed and the remaining are not

formed can be denoted a&" and(1) p) %) M respectively. Therefore, the Pnal probability that
out of these(%) potential links are formed can be represented as

I®0

Pm= 2 pma) pPm (3.62)

2
2
Theorem 3.5 In graphG(n, p) , the expected degree of node¢riy 1)p.

Proof For a nodeu in graphG(n, p), it can be connected with the remaining 1 nodes all with
probabilityp. Therefore, the expected degree of the nede G(n, p) can be represented as
!
E(D(u))

pal+ (1) p) a0
v#V\{ u}

(n) Lp. (3.63)
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Theorem 3.6 In graphG(n, p) , the probability that a node has adegreejdfs_”)d Ypd@) pym b d,

Proof Among thesen) 1 potential neighbors of a given node, eug.the node has”)d I different
choices to selectl neighbors foru to get connected with. Meanwhile, the probability of merely
forming links with these selected neighbors ispd(1) p)™ D 9. In other words, the probability
for a nodeu to have degred will be

/

0
POW=d= "1

4 Pl@ p e (3.64)

Theorem 3.7 The global clustering coefpcient of a random gr&pm, p) isp.

Proof According to the debnition of clustering coefbcient, we have

Tl

C(G(n,p)) = Pl (3.65)

where sefl denotes the node triples which form triangles and>sdenotes the node triples forming
a path of length 2.

In the random grapks(n, p), given three nodes, v,w # V, the probability that they will form
a pathu) v) w (whereu andw can be either connected or unconnected)dsMeanwhile, the
probability that these three nodes will form a triangle willp Therefore, we have the sizes of sets
T andP willbe |, wuv u=v=w p3and UV.WHV U= V=W p2, respectively, and the global clustering
coefbcient is

C(G(n,p)) = " uv,w#V,u= v~wp = p. (3.66)

u,v,w#V,u= v~wp

Theorem 3.8 In graphG(n, p), g|ven two nodes, v # V, the probability that there exists a path of

lengthk connectingu andv is Eg 7 pk.

Proof Betweenu andv, if there exists a path of lengthconnecting them, we can denote such a path
asP = u* up *aaa,ugi1* v, wherethe intermediate nodes, uy,...,ux 1 # V{u,v}.
There exist Eg f different choices of thesk) 1 nodes. Meanwhile, among thek§ 1 selected

nodes, the probability that they will form a path connectingndv will be pX. Therefore, we have
the probability that there exists a path of lengtbonnecting nodes andv can be represented as

/n)zok

P(u,v,k) = K) 1 p

(3.67)

Given the node number, some properties of the random graptn, p) will change as parameter
p increases from 0 to 1. In the case that 0, the random grap&(n, 0) will only involve n isolated
nodes without any connections. In such a graph, the graph diameter will be 0 and the size of the largest
connected component will contain merely 1 node and the average path length is 0 as no path exists
among these nodes. Asincreases, some links will be formed among the nodes, and the diameter of
the graphG(n, p) will increase which can also be greater than 1. At the same time, the size of the
largest component increases, while the average path length will also increase and can be greater than
1. Meanwhile, in the case that= 1, the graph will be a complete graph involvingiodes andm
links with diameter 1, where all the nodes will be incorporated into one single connected component.
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All the nodes will be connected, and the average path leng8(iin 1) will be 1. Formally, the point
where the diameter increases Prst and starts to shrink is callptidise transitior9] point.

Theorem 3.9 The phase transition happensat= ﬁ in the random graph model.
Proof The proof of the above theorem is left as an exercise for the readers.

In the random graph model, the formation of all the links is assumed to be independent with
identical probabilities. However, in the real-world social networks, such an assumption cannot hold.
For instance, in the socialization among users, people tend to form a small community involving
connections with a very limited number of people, like friends, family members, and colleagues. Many
other models, like themall-world mode[28, 39, 58] can be used to model the formation process of
such a phenomenon better.

3.6.2 Preferential Attachment Model

When making friends, generally the people with a large neighborhood can attract the connections
more easily. For instance, in the real-world online social networks, the celebrities, like the politicians
and super stars, are well known and they are usually among the top candidates that we choose to
follow. A well-established method to model such an observation in network formation is called the
preferential attachmennodel #].

In the preferential attachmennodel, at the very beginning, there exigtnode in the network and
new nodes will be added to form connections with these existing nodes. The new node will connected
n ! ng other existing nodes. Formally, we can represent the degrees of nodes in the existing graph,
e.g.,u, asD(u), and new nodes are more likely to establish connections with the active nodes, i.e.,
those with a large degree. The probability for a new node to get connected wéth be represented
asP (u) = ﬂ%(—v).

V#V

Theorem 3.10 The degree distribution of the graph generated by the preferential attachment model
follows the power-law distribution with an expondnt 3.

Proof According to the introduction, the probability for the newly added node to connected with an
existing nodeu is

Py = 2w __
v#V D(V)
Meanwhile, at each step the expected increase v0s degree is proportional@gu) , which can

be modeled with a mean-peld setting,

dD(u) _
dat

(3.68)

nP (u)

. ND(u)
VH#V D(V)
nD(u)
2nt
D(u)
2t

(3.69)
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« In each stepn links will be added, and after steps, the total node degree will be equal to
vy D(V) = 2nt. By solving such a partial differential equation, we can get

/ tO%
D(u) = n oo (3.70)

u

wheret, denotes the step thatis added into the network.
The probability thaD(u) is less thard can be represented as

/ nzt0 / nztO
P(D(u)<d) =P t“>? =1) P t,! z (3.71)
If we assume that, 5 Uniform(0,t), we have
/ 0
PDu)<d) =1) P t,! n_zt =1) n_2 ! (3.72)
- Yd2 T dZno+ '
Let the node degree distribution density function tdd®), we have
+P(D(u) < d) 2n°t 2n?
P d = = * _ 373
@ d T O @ (3.73)

Theorem 3.11 Based on the preferential attachment model, by using the mean-beld analysis, the
expected clustering coefbcient of the generated network is

no) 1(Int)2

C=
8 t

(3.74)
Theorem 3.12 Based on the preferential attachment model, the average path length of nodes in the
generated network is

In|v|

'O ntn(v)

(3.75)

The proofs of the above two theorems are out of the scope of this book, which will not be introduced
here. For the readers who are interested in the proof, please reé&j.to [

3.7 Summary

In this chapter, we provided an overview about the essential knowledge of online social networks,
which can generally be represented as graphs involving nodes and connections among the nodes.
Some basic information about graphs were provided at the beginning of this chapter, covering
the different graph representation methods, e.g., adjacency matrix and adjacency list, and graph
connectivity concepts, e.g., adjacent neighbors, incident links, walk, trail, tour, path, cycle, as well
as node reachability and connect component.

We introduced the various measures for networks in this chapter, including degree, centrality,
closeness, transitivity, and social balance. We talked about the node degree concept as well as the node
degree distribution, which provide the basic information about the network connectivity structures. To
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denote the importance of node roles in the network, several different node centrality measures were
introduced. The closeness between the node pairs in the networks can be computed with various
closeness measures based on the local network structures, global paths, and random walks. We
introduced the concepts of social transitivity, clustering coefbcient, and social balance to analyze
various social connection-based network properties.

Depending on the network structures and the involved information, the networks could be divided
into various categories, e.g., homogeneous network, heterogeneous network, and aligned hetero-
geneous networks. The representative examples of homogeneous networks include the friendship
network, computer network, and company organizational chart; the examples of heterogeneous
networks cover the online social network, bibliographic network, and movie knowledge library, while
the aligned heterogeneous networks concept provides the opportunity to model the information across
multi-platforms.

To depict the diverse information inside the networks, meta path can be a very useful methods,
which can outline the potential connections among the nodes. In the provided debnition of the meta
path concept based on the network schema, meta paths can be represented as the sequences of node
types connected by the link types. Besides the meta paths within one single heterogeneous network,
we also introduced the meta path across heterogeneous networks via the anchor meta path. Various
network measures, e.g., degree, centrality, and closeness, were debned based on the meta path concepit
as well.

We concluded this chapter with several network models, including the random graph model
and the preferential attachment model. A brief introduction and analysis about these two models
were provided, which can also be applied to study various social network learning problems to be
introduced in the following chapters as well.

3.8  Bibliography Notes

Studying online social networks and other related network structured data have been one of the most
important research topics in the academia of machine learning and data mining in recent years, since
lots of real-world data can be modeled as the netwodi. [There exist some survey articles on
social networks21], heterogeneous information networl8[51], and aligned social hetwork§§]
published in recent years already, which can serve as the road map to study these related areas for the
readers.

If the readers are interested in learning more knowledge about graph theory, you are very
recommended to read the textbodBr@ph Theory and Complex Networks: An Introduc@op5],
which is well-written and well-organized book and covers a very broad topic about graphs. The recent
Csocial Media Mining: An Introductio® textbookg5] also provides a brief introduction to the graph
related essential background knowledge, and the readers can take a look at that book as well.

Node degree distribution usually follows the power-law distributit®j,[where the majority of the
nodes only have a very small degree, while a very small number of the nodes can have a very large
degree instead. Node centrality metric can measure the importance of nodes based on their positions
inside the network, and a systematic overview of existing centrality measures is availabilp g
to the node closeness, the readers can take a look at the recent survey@&fticidich introduces
various closeness measures as potential link predictors. The network transitivity, clustering coefpcient,
and social balance concepts are covered $40,57], respectively.

A comprehensive survey about the network categories and existing network mining problems has
been provided in§6], which also covers one section on network fusion and learning specibcally.
For the heterogeneous information network research works, the readers are suggested to read the
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lecture synthesis boolb]], which covers the ranking, search, classibcation, and clustering problems
on heterogeneous information networks. About the aligned heterogeneous social network alignment
and mining problems, the readers are suggested to read the latest surveylfapérih covers the
alignment, link prediction, clustering, information diffusion, and embedding problems.

The meta path concept was initially introduced by Sun et al.58), [and lately extended by
Zhang et al. to the cross-network scenario7f]] which serves as an important tool for handling the
heterogeneous network structures. Based on the assumptions that networks are generated randomly,
the random graph model$4,17,49] can depict the generation process of graphs and certain properties
that these generated graphs can have. Meanwhile, the preferential attachment model can depict the
addition of new nodes into graphs, whose detailed description is availaldk in [

3.9 Exercises

1. (Easy) Please compute tmmeterof the graph shown in Fi@.23 and provide the maximum
shortest path

2. (Easy) Please compute thetweenness centralignd thenormalized betweenness centralitfy
all the nodes in the input graph shown in B3

3. (Easy) Please draw thiegree distributiomplot for the graph shown in Fi@.23

4. (Easy) Please compute tosenesscores for all potential node pairs in F&j23 based on
common neighbedaccardOs coefbcieandAdamic/Aday respectively.

5. (Medium) Besides the heterogeneous network examples provided in this chapter, please think
about some other data in the real world, which can be representededsrageneous netwark
Please also provide iteetwork schemaand list somaneta pathexamples based on the schema.

6. (Medium) Based on the network schema, we can debne a large number of meta paths. However,
in many applications, extremely long meta paths (e.g., longer than 10) are not very useful. Please
think why and write down the potential reasons.

7. (Medium) In Sect3.3.4.2 we show that thelustering coefbciergquals to

Number of triangle$ 6
P2

cc= (3.76)

Please also prove that the following equation also holds for computing the nethustkring
coefbcient

Number of triangle$ 6

CC=
Number of connected triples of nodes

(3.77)

8. (Hard) Please try to prove Theoré®regarding thehase transition poinin therandom graph
model

Fig. 3.23 Aninput graph
example @

(™) @.@@
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9. (Hard) Please prove that if a Markov chaitirisducibleandaperiodicthen the largest eigenvalue

of the transition matriP will be equal to 1 and all the other eigenvalues will be strictly less than
1, asintroduced in Se@.3.3.3

10. (Hard) Please try to prove Theorefdland3.12about thepreferential attachment model
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