
2Machine Learning Overview

2.1 Overview

Learning denotes the process of acquiring new declarative knowledge, the organization of new
knowledge into general yet effective representations, and the discovery of new facts and theories
through observation and experimentation. Learning is one of the most important skills that mankind
can master, which also renders us different from the other animals on this planet. To provide an
example, according to our past experiences, we know the sun rises from the east and falls to the west;
the moon rotates around the earth; 1 year has 365 days, which are all knowledge we derive from our
past life experiences.

As computers become available, mankind has been striving very hard to implant such skills
into computers. For the knowledge which are clear for mankind, they can be explicitly represented
in program as a set of simple reasoning rules. Meanwhile, in the past couple of decades, an
extremely large amount of data is being generated in various areas, including the World Wide Web
(WWW), telecommunication, climate, medical science, transportation, etc. For these applications, the
knowledge to be detected from such massive data can be very complex that can hardly be represented
with any explicit fine-detailed specification about what these patterns are like. Solving such a problem
has been, and still remains, one of the most challenging and fascinating long-range goals of machine
learning.

Machine learning is one of the disciplines, which aims at endowing programs with the ability
to learn and adapt. In machine learning, experiences are usually represented as data, and the main
objective of machine learning is to derive models from data that can capture the complicated hidden
patterns. With these learned models, when we feed them with new data, the models will provide
us with the inference results matching the captured patterns. Generally, to test the effectiveness of
these learned models, different evaluation metrics can be applied to measure the performance of the
inference results.

Existing machine learning tasks have become very diverse, but based on the supervision/label
information used in the model building, they can be generally categorized into two types: “supervised
learning” and “unsupervised learning.” In supervised learning, the data used to train models
are pre-labeled in advance, where the labels indicate the categories of different data instances.
The representative examples of supervised learning task include “classification” and “regression.”
Meanwhile, in unsupervised learning, no label information is needed when building the models,
and the representative example of unsupervised learning task is “clustering.” Between unsupervised

© Springer Nature Switzerland AG 2019
J. Zhang, P. S. Yu, Broad Learning Through Fusions,
https://doi.org/10.1007/978-3-030-12528-8_2

19

jwzhanggy@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12528-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-12528-8_2

20 2 Machine Learning Overview

learning and supervised learning, there also exists another type of learning tasks actually, which is
named as the “semi-supervised learning.” Semi-supervised learning is a class of learning tasks and
techniques that make use of both labeled and unlabeled data for training, typically a small amount of
labeled data with a large amount of unlabeled data. Meanwhile, besides these aforementioned learning
tasks, there also exist many other categorizations of the learning tasks, like “transfer learning,” “sparse
learning,” “reinforcement learning,” and “ensemble learning.”

To make this book self-contained, the goal of this chapter is to provide a rigorous, yet easy to
follow, introduction to the main concepts underlying machine learning, including the detailed data
representations, supervised learning and unsupervised learning tasks and models, and several classic
evaluation metrics. Considering the popularity of deep learning [14] in recent years, we will also
provide a brief introduction to deep learning models in this chapter. Many other learn tasks, like semi-
supervised learning [7, 57], transfer learning [31], sparse learning [28], etc., will be introduced in the
following chapters when discussing the specific research problems in detail.

2.2 Data Overview

Data is a physical representation of information, from which useful knowledge can be effectively
discovered by machine learning and data mining models. A good data input can be the key to
the discovery of useful knowledge. In this section, we will introduce some background knowledge
about data, including data types, data quality, data transformation and processing, and data proximity
measures, respectively.

2.2.1 Data Types

A data set refers to a collection of data instances, where each data instance denotes the description
of a concrete information entity. In the real scenarios, the data instances are usually represented by
a number of attributes capturing the basic characteristics of the corresponding information entity.
For instance, let’s assume we see a group of Asian and African elephants (i.e., elephant will be the
information entity). As shown in Table 2.1, each elephant in the group is of certain weight, height, skin
smoothness, and body shape (i.e., different attributes), which can be represented by these attributes
as an individual data instance. Generally, as shown in Fig. 2.1, the mature Asian elephant is in a
smaller size compared with the mature African elephant. African elephants are discernibly larger
in size, about 8.2–13 ft (2.5–4m) tall at the shoulder, and they weigh between 5000 and 14,000 lbs
(2.5–7 t). Meanwhile, Asian elephants are more diminutive, measuring about 6.6–9.8 ft (2–3m) tall at
the shoulder and weighing between 4500 and 12,000 lbs (2.25–6 t). In addition, from their ear size,

Table 2.1 An example of the elephant data set (ear size: 1 denotes large; 0 denotes small)

Elephant ID Weight (t) Height (m) Skin Ear size Trunk “finger” · · · Category
1 6.8 4.0 Wrinkled 1 2 · · · African
2 5.8 3.5 Wrinkled 1 2 · · · African
3 4.5 2.1 Smooth 0 1 · · · Asian
4 5.8 3.1 Wrinkled 0 1 · · · Asian
5 4.8 2.7 Wrinkled 1 2 · · · African
6 5.6 2.8 Smooth 1 1 · · · Asian
· ·

jwzhanggy@gmail.com

2.2 Data Overview 21

Asian Elephant African Elephant

Fig. 2.1 A comparison of Asian elephant vs African elephant

skin smoothness, and trunk “finger” number, etc., we can also effectively differentiate them from
each other. The group of the elephant data instances will form an elephant data set, as illustrated in
Table 2.1.

Instance-attribute style data format is a general way for data representation. For different types of
data sets, the attributes used to describe the information entities will be different. In the following parts
of this subsection, we will talk about the categories of attributes first, and then introduce different data
types briefly.

2.2.1.1 Attribute Types
Attribute is the basic element in describing information entities, and we provide its formal definition
as follows.

Definition 2.1 (Attribute) Formally, an attribute denotes a basic property or characteristic of an
information entity. Generally, attribute values can vary from one information entities to another in
a provided data set.

In the example provided in Table 2.1, the elephant body weight, height, skin smoothness, ear size,
and trunk “finger” number are all the attributes of the elephant information entities. Among these
attributes, both body weight and height are the attributes with continuous values, which can take values
in a reasonable range (e.g., [1 t, 7 t] for weight and [1m, 5m] for height, respectively); trunk “finger”
number is a discrete attribute instead, which takes values from set {1, 2}; ear size is a transformed
attribute, which maps the ear size into 2 levels (1: large; 0: small); and skin smoothness is an attribute
with categorical values from set {Wrinkled, Smooth}. These attributes listed above are all the facts
about elephants.

In Table 2.1, we use integers to denote the elephant ID, ear size, and trunk “finger” number.
However, for the same number appearing in these three kinds of attributes, they will have different
physical meanings. For instance, the elephant ID 1 of the 1st row in the table denotes the unique
identifier of the elephant in the table; meanwhile, the ear size 1 of rows 1, 2, 5, and 6 in the table
denotes the elephants have a large ear size; and the trunk “finger” number 1 of rows 3, 4, and 6 denotes
the count of trunk fingers about the elephant instances. Therefore, to interpret these data attributes, we
need to know their specific attribute types and the corresponding physical meanings in advance.

jwzhanggy@gmail.com

22 2 Machine Learning Overview

Fig. 2.2 A systematic
categorization of attribute
types

Numerical Categorical

Continuous Discrete

Interval Ratio

Ordinal

Periodic

Nominal

Coding Sheme

(orderless)

(Equality)(order, distance)

(order)

(year, month, week, hours)

As shown in Fig. 2.2, the attribute types used in information entity description can usually be
divided into two main categories, categorical attributes and numeric attributes. For instance, in
Table 2.1, skin smoothness is a categorical attribute and weight is a numeric attribute. As to the ear
size, originally this attribute is a categorical attribute, where the values have inherent orders in terms
of the elephant ear size. Meanwhile, the transformed attribute (i.e., the integer numbers) becomes a
numerical attribute instead, where the numbers display such order relationships specifically. We will
talk about the attribute transformation later.

Generally, the categorical attributes are the qualitative attributes, while the numeric attributes are
the quantitative attributes, both of which can be further divided into several sub-categories as well.
For instance, depending on whether the attributes have order relationships or not, we can divide the
categorical attributes into nominal attributes and ordinal attributes. On the other hand, depending on
the continuity of attribute values, the numeric attributes can be further divided into discrete attributes
and continuous attributes. Detailed descriptions about these above attribute categories are provided as
follows.

• Nominal Categorical Attribute: Nominal categorical attributes provide enough information to
distinguish one data instance from another, which don’t have any internal relationships. For
instance, for the elephant instances described in Table 2.1, the involved nominal categorical
attributes include elephant category ({Asian, African}) and elephant skin smoothness ({Wrinkled,
Smooth}). Besides this example, some other representative nominal categorical attributes include
colors ({Red, Green, . . ., Purple}), names (people name: {Alice, Bob, . . ., Zack}, country name:
{Afghanistan, Belgium, China, . . ., Zambia}), ID numbers ({1, 2, . . ., 99} or {id001, id002, . . .,
id099}).

• Ordinal Categorical Attributes: Similar to the nominal categorical attributes, the ordinal
categorical attributes also provide enough information to distinguish one object from another.
Furthermore, the ordinal attribute values also bear order information. Representative examples of
ordinal categorical attributes include elephant ear size ({Small, Large}), goodness ({Good, Better,
Best}), sweetness ({Sour, Slightly Sour, . . ., Slightly Sweet, Sweet}), grades ({A, B, C, D, F}).

• Discrete Numeric Attributes: Discrete numeric attribute is one type of numeric attribute from a
finite or countably infinite set of values. Representative examples of discrete numeric attributes
include the attributes about counts (e.g., elephant trunk “finger” number, population of countries,
number of employees in companies, number of days).

jwzhanggy@gmail.com

2.2 Data Overview 23

• Continuous Numeric Attributes: Continuous numeric attributes have real numbers as the attribute
values. Representative examples include temperature, mass, size (like length, width, and height).
Continuous numeric attributes are usually denoted as float-point real numbers in the concrete
representations.

2.2.1.2 Types of Data Sets
Data can be collected from different disciplines, and the original storage representations of the data
can be very diverse. The data storage types depend on various factors in data gathering, like the
equipment applied to gather the data, the preprocessing and cleaning operations, the storage device
format requirements, and specific application domains. To help provide a big picture about data set
types used in this book, we propose to categorize data into record data, graph data, and ordered data.
In this part, we will provide a brief introduction of these data types together with some illustrative
examples.

• Record Data: Many data sets can be represented as a set of independent data records described
by certain pre-specified attributes, like the elephant data set shown in Table 2.1. In the record style
data sets, the records are mostly independent of each other with no dependence or correlation
relationships among them. Besides the fixed attributes, for many other cases, the record attributes
can be dynamic and may change differently from one record to another. A representative example
of such a kind of data set is the “Market Transaction Data” (as illustrated in plot a of Fig. 2.3),
which is a set of market shopping transaction records. Each record denotes the purchased items
in the transaction, which may vary significantly for different transactions. In addition, in Fig. 2.3,

TID ITEMS

1 Bread, Butter, Milk

2 Beer, Diaper

3 Beer, Diaper, Bread, Milk

4 Soda, Diaper, Milk

AID Age Has_Job Own_House Credit Approval

1 Young TRUE FALSE Good Yes

2 Young FALSE FALSE Fair No

3 Middle TRUE TRUE Excellent Yes

4 Senior FALSE TRUE Good Yes

A B

computer software linux knuth love mac program windows

Document 1 3 2 0 5 1 0 3 5

Document 2 0 0 1 3 2 0 2 0

Document 3 0 5 4 6 8 0 6 0

Document 4 7 2 7 0 0 5 0 4

C

Fig. 2.3 Examples of record data ((a) shopping transaction record; (b) loan application record; (c) document-word
representation)

jwzhanggy@gmail.com

24 2 Machine Learning Overview

we also show two other examples of the record data sets, where one is about the loan application
record and the other one is about the document-word representation table. In the loan application
record, besides the application IDs, the involved attributes include “Age,” “Has Job,” “Own House,”
“Credit,” and “Approval,” where the first four attributes are about applicant profile and the last
attribute is about the application decision. For the document-word representation table, the words
are treated as the attributes and the numbers in the table denote the number of appearance of the
words in certain documents.

• Graph Data: For the information entities with close correlations, graph will be a powerful and
convenient representation for data, where the nodes can represent the information entities while
the links indicate the relationships. Generally, in graphs, the links among the information entities
may convey very important information. In some cases, the link can also be directed, weighted,
or signed, which will indicate the direction, weight and polarity of the relationships among
the information entities. As shown in Fig. 2.4, representative examples of graph data include:
(1) Online social networks (OSNs), where the nodes denote users and the links represent the
friendship/follow links among the users; (2) Chemical molecule graphs, where the nodes denote the
atoms and the links represent the bonds among the atoms; and (3)WorldWideWeb (WWW), where
the nodes represent the webpages while the links denote the hyperlinks among the webpages. Graph
style data can be represented in the Instance-Attribute format as well, where both the instances and

A: Online Social Media Graph B: Chemical Molecule Graph

C: The World Wide Web Graph

C
C

C

C
C C C

H
H

H
H
H H

H
H

H H

H
H

H

H

C7H14

webpage

Fig. 2.4 Examples of graph data ((a) online social media graph; (b) chemical molecule graph; (c) the internet webpage
graph)

jwzhanggy@gmail.com

2.2 Data Overview 25

attributes correspond to the information entities in the graphs, respectively. Such a representation
will be very similar to the graph adjacency matrix to be introduced in Sect. 3.2.1, whose entries
will have value 1 (or a signed weight) if they correspond to the connected information entities and
0 otherwise.

• Ordered Data: For the other data types, the instances or the attributes may be ordered in terms
of time or space, and such a kind of relationship cannot be captured by either the record data
or the graph data types, which will be represented as the ordered data instead. Representative
examples of the ordered data include the sequential transaction data, sequence data, text data,
time series data, and spatial data, some of which are shown in Fig. 2.5. In the real world, people
tend to shop at the same market for multiple times (like customers C1 and C2 in plot a of
Fig. 2.5), whose purchase records will have a temporal order relationship with each other, e.g., I4
and I5 are always purchased after I1. For the gene data from biology/bioinformatics, as shown
in plot c of Fig. 2.5, it can be represented as a sequence composed by A, T, G, and C (e.g.,
“GGTTCCTGCTCAAGGCCCGAA”), which defines the code of both human and animals. Data
accumulated from the observations about nature or finance like temperature, air pressure, stock
prices, and trading volumes can be represented as the ordered time series data (e.g., the Dow Jones
Industrial Index as shown in plot b of Fig. 2.5). For the data collected from the offline world, like
crime rate, traffic, as well as the weather observations, they will have some relationships in terms
of their spatial locations, which can be represented as the ordered data as well.

Time Customer Item

T1 C1 {I1, I2}

T2 C2 {I1, I3}

T3 C1 {I4, I5}

T4 C2 {I2, I4, I5}

A B

C

Fig. 2.5 Examples of ordered data ((a) sequential transaction record; (b) monthly Dow Jones industrial average; (c)
DNA double helix and interpreted sequence data)

jwzhanggy@gmail.com

26 2 Machine Learning Overview

2.2.2 Data Characteristics

For machine learning tasks, several characteristics of the data sets can be very important and may
affect the learning performance greatly, which include quality, dimensionality, and sparsity.

• Quality: Few data sets are perfect and real-world data sets will contain errors in the collection,
processing, and storage process due to various reasons, like human errors, flaws in data processing,
and limitations of devices. The data errors can also be categorized into various types, which include
noise, artifacts, outlier data instances, missing value in data representation, inconsistent attribute
values, and duplicate data instances. “Garbage in, Garbage out” is a common rule in machine
learning. All these data errors will degrade the data set quality a lot, and may inevitably affect the
learning performance.

• Dimensionality: Formally, the dimensionality of a data set denotes the number of attributes
involved in describing each data instance. Data set dimensionality depends on both the data set
and the data processing methods. Generally, data sets of a larger dimensionality will be much more
challenging to handle, which is also referred to as the “Curse of Dimensionality” [2, 3, 52]. To
overcome such a challenge, data processing techniques like dimension reduction [51] and feature
selection [15] have been proposed to reduce the data dimensionality effectively by either projecting
the data instances to a low-dimensional space or selecting a small number of attributes to describe
the data instances.

• Sparsity: In many cases, in the Instance-Attribute data representations, a large number of the
entries will have zero values. Such an observation is very common in application scenarios with a
large attribute pool but only a small number of the attributes are effective in describing each data
instance. Information sparsity is a common problem for many data types, like record data (e.g.,
transaction data), graph data (e.g., social network data andWWW data), and ordered data (e.g., text
data and sequential transaction data). Great challenges exist in handling the data set with a large
sparsity, which has very little information available for learning and model building. A category of
learning task named “sparse learning” [28] has been proposed to handle such a problem, and we
will introduce it in Sect. 7.6.

Before carrying out the machine learning tasks, these aforementioned characteristics need to
be analyzed on the data set in advance. For the data sets which cannot meet the requirements or
assumptions of certain machine learning algorithms, necessary data transformation and pre-processing
can be indispensable, which will be introduced in the following subsection in detail.

2.2.3 Data Pre-processing and Transformation

To make the data sets more suitable for certain learning tasks and algorithms, several different
common data pre-processing and transformation operations will be introduced in this part. To be
more specific, the data operations to be introduced in this subsection include data cleaning and
pre-processing [49], data aggregation and sampling [49], data dimensionality reduction and feature
selection [15, 51], and data transformation [49].

2.2.3.1 Data Cleaning and Pre-processing
Data cleaning and pre-processing [49] focus on improving the quality of the data sets to make them
more suitable for certain machine learning tasks. As introduced in the previous subsection, regular
errors that will degrade the data quality include noise, outliers, missing values, inconsistent values,

jwzhanggy@gmail.com

2.2 Data Overview 27

and duplicate data. Many data cleaning and pre-processing techniques have been proposed to address
these problems to improve the data quality.

Data noise denotes the random factor that will distort the data instance attribute values or the
addition of spurious instances. Noise is actually very hard to be distinguished from non-noise data,
which are normally mixed together. In the real-world learning tasks, noise is extremely challenging
to detect, measure, and eliminate. Existing works on handling noise mainly focus on improving the
learning algorithms to make them robust enough to handle the noise. Noise is very common in ordered
data, like time series data and geo-spatial data, where redundant noisy signals can be gathered in data
collection due to the problems with the device bandwidth or data collection techniques.

Outliers denote the data instances that have unique characteristics, which are different from the
majority of normal data instances in terms of the instance itself or only certain attributes. Outlier
detection has been a key research problem in many areas, like fraud detection, spam detection, and
network intrusion detection, which all aim at discovering certain unusual data instances which are
different from the regular ones. Depending on the concrete learning tasks and settings, different outlier
detection techniques have been proposed already, e.g., supervised outlier detection methods (based on
the extracted features about outliers) and unsupervised outlier detection methods (based on clustering
algorithms to group instances into clusters, and the isolated instances will be outliers).

In data analysis, missing value is another serious problem, causes of which are very diverse, like
unexpected missing data due to device fault in data collection, and intentional missing data due to
privacy issues in questionnaire filling. Different techniques can be applied to handle the missing
values, e.g., simple elimination of the data instance or attribute containing missing values, missing
value estimation, and ignoring missing values in data analysis and model building. Elimination of the
data instances or attributes is the simplest way to deal with the missing value problem, but it will also
lead to problems in removing important data instances/attributes from the data set. As to the missing
value estimation, methods like random missing value guess, mean value refilling, and majority value
refilling can be effectively applied. Ignoring the missing values in data analysis requires the learning
algorithms to be robust enough in data analysis, which requires necessary calibrations of the models
and is out of the scope of data pre-processing.

Data inconsistency is also a common problem in the real-world data analysis, which can be caused
by problems in data collection and storage, e.g., mis-reading of certain storage areas or failure in
writing protection of some variables in the system. For any two data instances with inconsistent
attribute values, a simple way will be to discard one, but extra information may be required in
determining which instance to remove. Another common problem in data analysis is data duplication,
which refers to the multiple-time occurrence of data instances corresponding to the same information
entities in the data set. Data duplication is hard to measure, as it is very challenging to distinguish
real duplicated data instances from legitimated data instances corresponding to different information
entities. One way to address such a problem will be information entity resolution to identify the data
instances actually corresponding to the same information entities.

2.2.3.2 Data Aggregation and Sampling
For many learning tasks, the data set available can be very big involving a large number of data
instances. Learning from such a large-scale data set will be very challenging for many learning
algorithms, especially those with a high time complexity. To accommodate the data sets for these
existing learning algorithms, two data processing operations can be applied: data aggregation and
data sampling [49].

Data aggregation denotes the operation of combining multiple data instances into one. As
aforementioned, one motivation to apply data aggregation is to reduce the data size as well as the
data analysis time cost. Based on the aggregated data sets, many expensive (in terms of space and

jwzhanggy@gmail.com

28 2 Machine Learning Overview

time costs) learning algorithms can be applied to analyze the data. Another motivation to apply data
aggregation is to analyze the data set from a hierarchical perspective. Such an operation is especially
useful for data instances with hierarchical attributes, e.g., sale transaction records in different markets,
counties, cities, states in the USA. The sales of certain target product can be quite limited in a specific
market, and the market level transaction record data will be very sparse. However, by aggregating (i.e.,
summing up) the sale transactions from multiple markets in the same counties, cities, and even states,
the aggregated statistical information will be more dense and meaningful. Data aggregation can also
have disadvantages, as it can lead to information loss inevitably, where the low-level data patterns will
be no longer available in the aggregated high-level data sets.

Another operation that can be applied to handle the large-scale data sets is data sampling. Formally,
sampling refers to the operation of selecting a subset of data instances from the complete data set with
certain sampling methods. Data sampling has been used in data investigation for a long time, as
processing the complete data set can be extremely time consuming, especially for those with a large
size (e.g., billions of records). Selecting a subset of the records allows an efficient data analysis in a
short period of time. Meanwhile, to preserve the original data distribution patterns, the sampled data
instances should be representative enough to cover the properties about the original data set. Existing
data sampling approaches can be divided into two main categories:

• Random Sampling: Regardless of the data instances, random sampling selects the data instances
from data sets randomly, which is the simplest type of sampling approach. For such a kind of
sampling approach, depending on whether the selected instances will be replaced or not, there
exist two different variants: (1) random data sampling without replacement, and (2) random data
sampling with replacement. In the approach with instance replacement, all the selected instances
will be replaced back in the original data set and can be selected again in the rounds afterwards.
Random sampling approaches will work well for most regular data sets with a similar size of
instances belonging to different types (i.e., class balanced data sets).

• Stratified Sampling: However, when handling the data sets with imbalanced class distributions,
the random data sampling approach will suffer from many problems. For instance, given a data
set with 90% positive instances and 10% negative instances (positive and negative here denote two
different classes of data instances, which will be introduced in Sect. 2.3 in detail), random sampling
approach is applied to sample 10 of the instances from the original data set. In the sampled data
instances, it is highly likely that very few negative instances will be selected due to their scarcity in
the original data set. To overcome such a problem, the stratified sampling can be applied instead.
Stratified sampling will select instances from both positive and negative instance sets separately,
i.e., 9 positive instances and 1 negative data instance will be selected finally.

2.2.3.3 Data Dimensionality Reduction and Feature Selection
Besides the number of data instances, the number of attributes used to describe the data instances
can be very large as well, which renders many learning algorithms fail to work. Due to the “curse
of dimensionality” [2, 3, 52], the increase of data dimensionality will make the data much harder to
handle. Both the classification and clustering (to be introduced later) tasks will suffer from such high-
dimensional data sets due to the large number of variables to be learned in the models and the lack
of meaningful evaluation metrics. There exist two classic methods to reduce the data dimensionality,
i.e., dimensionality reduction and feature selection [15, 51], which will be introduced as follows.

Conventional data dimensionality reduction approaches include principal components analysis
(PCA), independent component analysis (ICA), and linear discriminant analysis (LDA), etc., which
apply linear algebra techniques to project data instances into a lower-dimensional space. PCA is a
statistical procedure that uses an orthogonal transformation to convert the observations of possibly
correlated variables into a set of linearly uncorrelated variables, which are called the principal

jwzhanggy@gmail.com

2.2 Data Overview 29

components. The objective continuous attributes to be discovered in PCA should be (1) a linear
combination of original attributes, (2) orthogonal to each other, and (3) able to capture the maximum
amount of variation in the observation data. Different from PCA, ICA aims at projecting the data
instances into several independent components, where the directions of these projections should have
the maximum statistical independence. Several metrics can be used to measure the independence of
these projection directions, like mutual information and non-Gaussianity. LDA can be used to perform
supervised dimensionality reduction. LDA projects the input data instances to a linear subspace
consisting of the directions which maximize the separation between classes. In LDA, the dimensions
of the output are necessarily less than the number of classes. Besides these approaches introduced,
there also exist so many other dimensionality reduction approaches, like canonical correlation
analysis (CCA) and singular value decomposition (SVD), which will not be introduced here since
they are out of the scope of this book. A comprehensive review of these dimensionality reduction
methods is available in [51].

Dimensionality reduction approaches can effectively project the data instances into a lower-
dimensional space. However, the physical meanings of the objective space can be very hard to
interpret. Besides dimensionality reduction, another way to reduce the data dimension will be to
select a subset of representative attributes from the original attribute set to represent the data instances,
i.e., feature selection [15]. Among the original attributes, many of them can be either redundant or
irrelevant with each other. Here, the redundant attributes denote the attributes sharing duplicated
information with the other attributes in the data, while the irrelevant attributes represent the attributes
which are not useful for the machine learning tasks actually. The physical meanings of these selected
attributes will be still the same as the original ones. As illustrated in Fig. 2.6, existing feature selection
approaches can be categorized into three groups:

• Filter Approaches: Before starting the learning and mining tasks, filter approaches will select the
features in advance, which are independent of the learning and mining tasks.

Fig. 2.6 Feature selection
approaches (filter
approach, embedded
approach, and wrapper
approach)

All Features Filter Feature
Subset FilterPredictor

All Features

All Features

Selection
Component

Feature
Subset

FilterPredictor

Multiple
Feature
Subset

FilterPredictor

Wrapper
Selection

jwzhanggy@gmail.com

30 2 Machine Learning Overview

• Embedded Approaches: Some learning models have the ability to do feature selection as
one component in the models themselves. Such feature selection approaches are named as the
embedded approaches.

• Wrapper Approaches: Many other feature selection approaches use the learning model as a black
box to find the best subset of attributes which are useful for the objective learning tasks. Such a
feature selection approach involves model learning for many times and will not enumerate all the
potential attribute subsets, which is named as the wrapper approach.

As to the feature subset search algorithms, there exist two classic methods, i.e., the forward feature
selection and the backward feature selection. Forward feature selection approaches begin with an
empty set and keep adding feature candidates into the subset, while backward feature selection
approaches start with a full set and keep deleting features from the set. To determine which feature
to add or delete, different strategies can be applied, like sequential selection and greedy selection. If
the readers are interested in feature selection methods, you are suggested to refer to [15] for a more
complete literature.

2.2.3.4 Data Transformation
In many cases, the input data set cannot meet the requirements of certain learning algorithms, and
some basic data transformation operations will be needed. Traditional data transformation operations
include binarization, discretization, and normalization [49].

• Binarization: For categorical attributes, we usually need to quantify them into binary represen-
tations before feeding them to many learning algorithms. Normally, there are many different
categorical attribute binarization methods. For instance, given a categorical attribute with m

potential values, we can quantify them into binary codes of length logm2 . For instance, for an apple
sweetness attribute with sweetness degrees {Sour, Slightly Sour, Tasteless, Slight Sweet, Sweet}, it
can be quantified into a code of length 3 (like Sour: 001; Slightly Sour: 010; Tasteless: 011; Slight
Sweet: 100; Sweet: 101). However, such a quantification method will introduce many problems,
as it will create some correlations among the attributes (like “Sour” and “Sweet’ will be very
similar in their code representations, i.e., “001” vs “101,” which share two common digits). A more
common way to quantify categorical attributes (of m different values) is to represent them with a
code of length m instead. For instance, for the five different sweetness degrees, we use “00001” to
represent “Sour,” “00010” to represent “Slightly Sour,” “00100” to represent “Tasteless,” “01000”
to represent “Slightly Sweet,” and “10000” to represent “Sweet.” Such a quantification approach
will transform the categorical attributes into independent binary codes. The shortcoming of such a
binarization lies in its code length: for the categorical attribute with lots of values, the code will be
very long.

• Discretization: In many cases, we need to transform continuous attributes into discrete ones
instead for easier classification or association analysis, and such a process is called the attribute
discretization. For instance, given an attribute with continuous values in range [min, max], we
want to discretize the attribute into n discrete values. An easy way to achieve such an objective
will be to select n − 1 splitting points (e.g., x1, x2, . . ., xn−1) to divide the value range into
n bins (i.e., [min, x1], (x1, x2], . . ., (xn−1,max]), where the attribute values in each bin will be
denoted as a specific discrete value. Depending on whether the supervision information is used
in the splitting points selection or not, existing attribute discretization approaches can be divided
into two categories: supervised attribute discretization and unsupervised attribute discretization.
Conventional unsupervised attribute discretization approaches include equal width and equal depth
based splitting points selection, which aims at dividing the data points into intervals of the same

jwzhanggy@gmail.com

2.2 Data Overview 31

Fig. 2.7 An example of
attribute normalization

w1

w2

0.010.001

0.01

2.0

w1

w2

y = w1x1 + w2x2

x1 ∈ [100, 1000]

x2 ∈ [0.5, 100]

Without Attribute Normalization With Attribute Normalization

interval length and the same data point numbers in each interval, respectively. Meanwhile, the
supervised attribute discretization approaches will use the supervision information in splitting
points selection, and a representative approach is called the entropy-based attribute discretization.

• Normalization: Attribute normalization is an operation used to standardize the range of inde-
pendent variables or attributes of data. Since the range of values of raw data varies widely,
in some machine learning algorithms, the objective functions can be extremely challenging to
solve properly without normalization. The simplest attribute normalization method is Min-Max
normalization. The general formula of the Min-Max rescaling approach is given as: xnew =
x−xmin

xmax−xmin
, where x denotes the value of an attribute, xmin and xmax denote the minimum and

maximum values of the correspond attribute, respectively. Besides the Min-Max normalization
approach, some other normalization approach includes the Mean-Std normalization approach,
whose general formula can be represented as xnew = x−x̄

σ , where x̄ and σ represent the mean
and standard deviation about an objective attribute.

To illustrate the motivations of attribute normalization, in Fig. 2.7, we show an example
about solving the objective optimization function based on datasets with and without attribute
normalization, respectively. Here, we aim at building a linear regression model y = w1x1 +w2x2,
where y ∈ [0, 1] and x1 ∈ [100, 1000], x2 ∈ [0.5, 100]. To learn the model, the objective function
will aim at identifying the optimal weight variables w1 and w2, which can minimize the model
learning loss, i.e., the red dots at the center of the curve. As shown in the left plot of Fig. 2.7,
without attribute normalization, the objective function curve is in an oval shape, where w2 has a
relatively wider feasible range compared with w1. Searching for the optimal point based on such
a curve with conventional optimization algorithms, e.g., gradient descent, will be extremely slow.
However, with attribute normalization, the model variables w1 and w2 will have a similar feasible
range and the objective function curve will be very close to a circular shape. The optimal point
can be efficiently identified along the function gradient with a very small number of search rounds
instead.

This section has covered a brief introductory description about data, data characteristics, and data
transformations, which will be used for data analysis and processing in machine learning. Based on

jwzhanggy@gmail.com

32 2 Machine Learning Overview

the processed data set, we will introduce different kinds of learning tasks in detail in the following
sections, respectively.

2.3 Supervised Learning: Classification

Supervised learning tasks aim at discovering the relationships between the input attributes (also called
features) and a target attribute (also called labels) of data instances, and the discovered relationship is
represented as either the structures or the parameters of the supervised learning models. Supervised
learning tasks are mainly based on the assumption that the input features and objective labels of both
historical and future data instances are independent and identically distributed (i.i.d.). Based on such
an assumption, the supervised learning model trained with the historical data can also be applied to
the objective label prediction on the future data. Meanwhile, in many real-world supervised learning
tasks, such an assumption can hardly be met and may be violated to a certain degree.

In supervised learning tasks, as illustrated in Fig. 2.8, the data set will be divided into three subsets:
training set, validation set (optional), and testing set. For the data instances in the training set and the
validation set, their labels are known, which can be used as the supervision information for learning
the models. After a supervised learning model has been trained, it can be applied to the data instances
in the testing set to infer their potential labels. Depending on the objective label types, the existing
supervised learning tasks can be divided into classification tasks and regression tasks, respectively,
where the label set of classification tasks is usually a pre-defined class set Y , while that of regression
tasks will be the real number domain R instead.

Original Set

Training Set Testing Set

Training Set Testing SetValidation Set

Machine
Learning Algorithm

Predictive Model

Training Hyperparameter
Tuning

Performance Evaluation

Fig. 2.8 Training set, validation set, and testing set split

jwzhanggy@gmail.com

2.3 Supervised Learning: Classification 33

For both classification and regression tasks, different machine learning models1 have been
proposed already, like classic classification models: decision tree [37] and support vector machine
[9], and classic regression models: linear regression [55], lasso [50], and ridge [20]. In this section,
we will mainly focus on introducing the classification learning task, including its learning settings and
two classic classification models: decision tree and support vector machine. A brief introduction to
the classic regression models will be provided in the next section.

2.3.1 Classification Learning Task and Settings

In classification problem settings, the data sets are divided into three disjoint subsets, which include a
training set, a validation set, and a testing set. Generally, the data instances in the training set are used
to train the models, i.e., to learn the model structure or parameters. The validation set is used for some
hyperparameter selection and tuning. And the testing set is mainly used for evaluating the learning
performance of the built models. Many different methods have been proposed to split the data set into
these subsets, like multiple random sampling and cross validation [25].

• Multiple Random Sampling: Given a data set containing n data instances, multiple random
sampling strategy will generate two separate subsets of instance for model training and validation
purposes, where the remaining instances will be used for model testing only. In some cases, such
a data set splitting method will encounter the unreliability problem, as the testing set can be too
small to be representative for the overall data set. To overcome this problem, such a process will
be performed n times, and in each time, different training and testing sets will be produced.

• Cross Validation: When the data set is very small, cross validation will be a common strategy for
splitting the data set. There are different variants of cross validation, like k-fold cross validation
and leave-one-out cross validation. As shown in Fig. 2.9, in the k-fold cross validation, the data
set is divided into k equal sized subsets, where each subset can be picked as a testing set while the
remaining k − 1 subsets are used as the training set (as well as the validation set). Such a process
runs for k times, and in each time a different subset will be used as the testing set. The leave-one-
out cross validation works in a similar way, which picks one single instance as the testing set and
the remaining instances will be used as the training set in each round. For the data sets of a large
scale, the leave-one-out cross validation approach will suffer from the high time cost problem.
In the real-world model learning, the n-fold cross validation is used more frequently for data set
splitting compared with the other strategies.

Formally, in the classification task, we can denote the feature domain and label domain as X
and Y , respectively. The objective of classification tasks is to build a model with the training set
and the validation set (optional), i.e., f : X → Y , to project the data instances from their feature
representations to their labels. Formally, the data instances in the training set can be represented as a
set of n feature-label pairs T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ X denotes the feature
vector of the ith data instance and yi ∈ Y represents its corresponding label. The validation set V can
be represented in a similar way with both features and known labels for the data instances. Meanwhile,
the data instances in the testing set are different from those in the training and validation sets, which
only have the feature representation only without any known labels. Formally, the testing set involving

1Machine learning models usually denote the well trained learning algorithms by some training data. In the sequel of
this book, we will not differentiate the differences between machine learning models and machine learning algorithms
by default.

jwzhanggy@gmail.com

34 2 Machine Learning Overview

Original Set

Testing Fold

Testing Fold

Testing Fold

Testing Fold

Testing Fold
5-Fold
Cross

Validation

Training Set Validation Set (Optional)

Fig. 2.9 An example of five-fold cross validation

m data instances can be represented as a set S = {xn+1, xn+2, . . . , xn+m}. Based on the well-trained
models, we will be able to identify the labels of the data instances in the testing set.

Next, we will take the binary classification task as an example (i.e., Y = {+1,−1} or Y = {+1, 0})
and introduce some classic classification algorithms, including decision tree [37] and support vector
machine [9].

2.3.2 Decision Tree

In this section, we will introduce the classic decision tree classification algorithm [37], and will take
the binary classification problem as an example. For binary classification tasks, the objective class
domain involves two different pre-defined class labels {+1,−1} (i.e., the positive class label and
negative class label). The procedure of classifying data instances into positive and negative classes
actually involves a series of decision-making about questions, like “whether this elephant has two
trunk fingers?” or “is the elephant weight greater than 6 tons?” As indicated by the name, decision tree
is such a kind of classification model, which is based on a series of decision-making procedure. Before
achieving the final decision (i.e., data instances belonging to positive/negative classes), a group of
pre-decisions will be made in advance. The final learned model can be represented as a tree structured
diagram, where each internal node represents a “question” and each branch denotes a decision option.
Decision tree is one of the most widely used machine learning algorithms for classification tasks due
to its effectiveness, efficiency, and simplicity.

jwzhanggy@gmail.com

2.3 Supervised Learning: Classification 35

Fig. 2.10 An example of
decision tree model built
for the elephant data set

weight?

height?

< 6t

Trunk Finger?

< 3.2m

Asian African

African

African

 6t

 3.2m

1 2

2.3.2.1 AlgorithmOverview
To help illustrate the decision tree model more clearly, based on the elephant dataset shown in
Table 2.1, we provide a trained decision tree model in Fig. 2.10.

Example 2.1 For the elephant classification example shown in Fig. 2.10, the attribute of interest is the
“Elephant Category” attribute, which serves as the classification objective label and takes value from
{Asian, African}. Based on the “Weight” attribute, the data instances can be divided into two subsets:
(1) elephant (data instances) with “Weight” no less than 6 t (i.e., instance {1}), and (2) elephant (data
instances) with “Weight” less than 6 t (i.e., {2, 3, 4, 5, 6}). For the data instances in the first group
(i.e., weight ≥6 t), they all belong to the African elephant category; while the second group involves
both Asian and African elephants. Meanwhile, based on the elephant height (i.e., height ≥3.2m or
height <3.2m), we can further divide the second group into two sub-groups: {2} and {3, 4, 5, 6},
where instance 2 belongs to the African elephant category. The remaining elephants in {3, 4, 5, 6} can
be precisely divided into {5} and {3, 4, 6} based on the trunk “finger” number attribute (i.e., 1 trunk
finger or 2 trunk fingers), where the instance in the first group has the Asian elephant label and those
in the second group all have the African elephant label.

From the built decision tree model shown in Fig. 2.10, we observe that there exist two types of
nodes in the tree: (1) decision node (i.e., the non-leaf node in blue color), and (2) result node (i.e., the
leaf node in red color). Each decision node represents an attribute test, which divides the data instances
into two groups (i.e., two branches). In the ideal case, each result node represents a classified label,
which is usually pure in terms of the label values. In other words, the training data instances classified
into each result node should all have the same label. For instance, in the tree shown in Fig. 2.10, we
can exactly determine the “Elephant Category” attribute of all the data instances in Table 2.1. In other
words, the decision tree model in Fig. 2.10 is well trained and can be applied to precisely classify the
elephant data instances in Table 2.1.

Decision tree applies the divide-and-conquer strategy in model learning, which partitions the data
instances into different groups based on their attributes. The pseudo-code of decision tree learning is
provided in Algorithm 1. From the pseudo-code, we observe that the training process of the decision
tree model involves a recursive process. In each recursion, the returning conditions of the algorithm
include:

1. All the data instances belong to the same class and no need for further division.
2. The attribute set is empty and the data instances cannot be further divided.

jwzhanggy@gmail.com

36 2 Machine Learning Overview

Algorithm 1 DecisionTree
Require: Training Set T = {(x1, y1), (x2, y2), · · · , (xn, yn)}

Attribute Set A = {a1, a2, · · · , ad }.
Ensure: A Trained Decision Tree Model
1: generate a node N
2: if instances in T belong to the same class then
3: mark node N as the result node; Return
4: end if
5: if A == ∅ OR instances in T take the same values in attribute set A then
6: mark node N as the result node, whose corresponding label is the majority class of instances in T ; Return
7: end if
8: select the optimal partition attribute a∗ from A
9: for all values a∗

v for attribute a∗ do
10: generate a branch node Na∗

v
for node N

11: select an instance subset Ta∗
v

⊂ T taking value a∗
v for attribute a∗

12: if Ta∗
v
== ∅ then

13: mark branch node Na∗
v
as the result node, whose corresponding label will be the majority class of instances

in T ; Continue
14: else
15: SubT ree = DecisionTree(Ta∗

v
, A \ {a∗})

16: assign root node of SubT ree to the branch node Na∗
v

17: end if
18: end for
19: Return a decision tree model with N as the root

3. All the data instances take the same values in the provided attribute set, which cannot be further
divided.

4. The provided data instance set is empty and cannot be further divided.

In addition, for these different cases, the operations to be performed in Algorithm 1 will be different.

• In case 1, the current node N will be marked as a result node, and its corresponding label will
be the common class label of data instances in T . The current node N will also be returned as a
single-node decision tree to the upper level function call.

• In cases 2 and 3, the current node N is marked as the result node, and its corresponding label
will be the majority class of instances in T . The current node N will be returned as a single-node
decision tree to the upper level function call.

• In case 4, the generated node Na∗
v
is marked as a result node, and its corresponding label will be

the majority class of instances in T . The algorithm will continue to the next possible value of the
selected optimal division attribute a∗.

• Otherwise, the algorithm will make a recursive call of the DecisionTree function, whose returned
root node will be assigned to the branch node Na∗

v
.

2.3.2.2 Attribute SelectionMetric: Information Gain
According to Algorithm 1, the structure of the built decision tree is heavily dependent on the selection
of the optimal division node a∗ in each recursive step, which will affect the performance of the model
greatly. Generally, via a sequential attribute test from the decision tree root node to the result node,
the data instances will be divided into several different groups and each decision tree result node
corresponds to one data instance group. In general, we may want the data instances in each divided
group to be as pure as possible. Here, the concept “pure” denotes that most/all the data instances in
each group should have the same class label, and attributes that can introduce the maximum “purity

jwzhanggy@gmail.com

2.3 Supervised Learning: Classification 37

increase” will be selected first by the model. Viewed in such a perspective, the quantification of
“purity” and “purity increase” will be very important for the decision tree model building.

Given the current training set T , depending on the data instance labels, the ratio of the data
instances belong to the lth class can be denoted as pl (l ∈ {1, 2, . . . , |Y|}). Meanwhile, based on
a certain attribute ai ∈ A in the attribute set, the data instances in T can be partitioned into k groups
Tai,1, Tai,2 , . . . , Tai,k , where {ai,1, ai,2, . . . , ai,k} denotes the value set of attribute ai . Therefore, the
ratio of data instances taking value ai,j for attribute ai in the current data instance can be represented

as
|Tai,j |
|T | .
Based on these notations, different “purity” and “purity increase” concept quantification metrics

have been proposed for the optimal attribute selection already, like Entropy [47] and Information
Gain [39, 47]. Formally, given a data set T together with the data instance class distribution ratios
{pl}l∈{1,2,...,|Y |}, the “purity” of all the data instances can be represented with the information entropy
concept as follows:

Entropy(T) = −
|Y |∑

l=1

pl log2 pl. (2.1)

Meanwhile, after picking an attribute ai , the data instances in T will be further divided into k

subsets Tai,1, Tai,2 , . . . , Tai,k . If the class label distribution in each of these k subsets is pure, i.e., the
overall entropy is small, the selected attribute ai will be a good choice. Formally, the information gain
[39, 47] introduced by attribute ai on data instance set T can be represented as

Gain(T , ai) = Entropy(T)

−
∑

ai,j

|Tai,j |
|T | Entropy(Tai,j). (2.2)

The optimal attribute in the current attribute set A that can lead to maximum information gain can be
denoted as

a∗ = argai∈AmaxGain(T , ai). (2.3)

The famous ID3 Decision Tree algorithm [37] applies information gain as the division attribute
selection metric. Besides information gain, many other measures can be used as the best attribute
selection metrics as well, e.g., information gain ratio and Gini index, which will be introduced in the
following part.

2.3.2.3 Other Attribute SelectionMetrics
Actually, information gain is a biased attribute selection metric, which favors the attributes with more
potential values to take and may have negative effects on the attribute selection. To overcome such
a disadvantage, a new metric named information gain ratio [39] is proposed, which normalizes the
information gain by the corresponding attributes’ intrinsic values. Formally, based on the current data
instance set T , the intrinsic value of an attribute ai can be represented as

IV (T , ai) = −
∑

ai,j

|Tai,j |
|T | log

|Tai,j |
|T | . (2.4)

jwzhanggy@gmail.com

38 2 Machine Learning Overview

Based on the above notation, the information gain ratio introduced by attribute ai can be formally
represented as follows:

GainRatio(T , ai) =
Gain(T , ai)

IV (T , ai)
. (2.5)

The optimal attribute to be selected in each round will be those which can introduce the maximum
information gain ratio instead, and the selection criterion can be formally represented as

a∗ = argai∈AmaxGainRatio(T , ai). (2.6)

However, information gain ratio is also shown to be a biased metric. Different from the information
gain, the information gain ratio metric favors the attributes with less potential values instead.
Therefore, the famous C4.5 Decision Tree algorithm [38] applies heuristics to pre-select the attribute
candidates with information gain that is larger than the average, and then applies information gain
ratio to select the optimal attribute.

Another regularly used division node selection metric is Gini index [39]. Formally, the Gini metric
of a given data instance set T can be represented as

Gini(T) =
|Y |∑

i=1

|Y |∑

i′=1,i′)=i

pipi′ = 1 −
|Y |∑

i=1

p2
i . (2.7)

Here, pi denotes the data instance ratio belonging to the ith class. In general, mixed data instance
set with class labels evenly distributed will have larger Gini scores. Based on the Gini metric, we can
define the Gini index [39] of the data set about attribute ai ∈ A as

GiniIndex(T , ai) =
∑

ai,j

|Tai,j |
|T | Gini(Tai,j). (2.8)

The optimal selection of the division attribute will be that introducing the minimum Gini index, i.e.,

a∗ = argai∈AminGiniIndex(T , ai). (2.9)

2.3.2.4 Other Issues
Besides the optimal attribute selection, there also exist many other issues that should be studied in the
decision tree algorithm.

1. Overfitting and Branch Pruning Overfitting [17] is a common problem encountered in the
learning tasks with supervision information. Model overfitting denotes the phenomenon that the model
fits the training data “too good,” which treats and captures some specific pattern in the training set as a
common pattern in the whole data set, but will achieve a very bad performance when being applied to
some unseen data instances. Formally, given the training data set, testing set, and two trained decision
tree models f1 and f2, model f1 is said to overfit the data set T , if the other f1 achieves higher
accuracy on the training set than f2, but performs much worse than f2 on the unseen testing set. In
the overfitting scenario, the built decision tree can be very deep with so many branches, which will
classify all the instances in the training set perfectly without making any mistake, but can hardly be
generalized to the unseen data instances.

jwzhanggy@gmail.com

2.3 Supervised Learning: Classification 39

To overcome such a problem, different techniques can be applied in the decision tree model
building process, like branch pruning [38]. The branch pruning strategy applied in decision tree
training process includes both pre-pruning and post-pruning, as introduced in [38]. For the pre-
pruning strategy, in building the decision tree model, before generating a child node for the decision
nodes, certain tests will be performed. If dividing the current decision node into several child nodes
will not generalize the model to improve its performance, the current decision node will be marked as
the result node. On the other hand, for the post-pruning strategy, after the original decision tree model
has been built, the strategy will check all the decision nodes. If replacing the decision node as a result
node will generalize the mode to improve the performance, the sub-tree rooted at the current decision
node will be replaced by a result node instead.

Generally, pre-pruning strategy can be dangerous, as it is actually not clear what will happen if
the tree is extended further without pre-pruning. Meanwhile, the post-pruning strategy is more useful,
as it is based on the complete built decision tree model, and it is clear which branch of the tree is
useful and which one is not. Post-pruning has been applied in many existing decision tree learning
algorithms.

2. Missing Value In many cases, there can exist some missing values for the data instances in the
data set, which is very common for data obtained from areas, like social media and medical care. Due
to the personal privacy protection concerns, people may hide some personal important information or
sensitive information in the questionnaire. The classic way to handle the missing values in data mining
will be to fill in the entries with some special values, like “Unknown.” In addition, if the attribute takes
discrete values, we can also fill in the missing entries with the most frequent value of that attribute; if
the attribute is continuous, we can fill in the missing entries with mean value of the attribute.

Meanwhile, for the decision tree model, besides these common value filling techniques, some other
methods can also be applied to handle the missing value problem. In the classic decision tree algorithm
C4.5 [38], at a tree decision node regarding a certain attribute, it can distribute the training data
instances with missing values for that attribute to each branch of the tree proportionally according to
the distribution of the training instances. For example, let’s take a as an attribute to be dealt with at
the current decision tree, and assume T to be the current data instance set and Tai ⊂ T to be a subset
of data instances with value ai for attribute a. For each data instances x ∈ T , a weight wx will be
assigned to x. We propose to define the ratio of data instances with value ai to be

rai =
∑

x∈Tai
wx

∑
x∈T wx

. (2.10)

If data instance x has no value for attribute a, x will be assigned to all the child nodes of a, i.e.,
the branch corresponding to values {a1, a2, . . . , ak}. What’s more, the weight of x for the branch
corresponding to value ai will be rai · wx.

3. Multi-Variable Decision Tree Traditional decision tree model tests one single attribute at each of
the decision node once. If we take each attribute as a coordinate of a data instance, the decision
boundaries outlined by the decision tree model will be parallel to the axes, which renders the
classification results interpretable but the decision boundary can involve too many small segments
to fit real decision boundaries.

jwzhanggy@gmail.com

40 2 Machine Learning Overview

Fig. 2.11 Classic decision
tree to fit complex decision
boundary

x1

x2

O

Example 2.2 For instance, as shown in Fig. 2.11, given the data instances with two features x =
[x1, x2]* and one label y with decision boundary denoted by the red line, where instances lying at
the top left are positive (i.e., the blue squares) while those at the bottom right are negative (i.e., the
red circles) instead. To fit such a decision boundary, the decision tree model will involve a series of
zig-zag segments (i.e., the black lines) as the decision boundary learned from the data set.

One way to resolve such a problem is to involve multiple variables in the tests of decision nodes.
Formally, the decision test at each decision node can be represented as

∑
i wiai = t , where wi

denotes the weight of the ith attribute ai . Formally, all the involved variables, i.e., weight wi for ∀ai
together with the threshold value t , can be learned from the data. Formally, the decision tree algorithm
involving multiple variables at each decision node test is named as the multi-variable decision tree
[6]. Different from the classic single-variable decision tree algorithm, at each decision node, instead
of selecting the optimal attribute for division, multi-variable decision tree aims at finding the optimal
linear classifier, i.e., the optimal weights and threshold. Based on the multi-variable decision tree,
the data instances shown in Fig. 2.11 can be classified by test function x1 − x2 = 0 perfectly, where
instances with attributes x1 − x2 < 0 will be partitioned into one branch and those with attributes
x1 − x2 > 0 will be partitioned into another branch instead.

2.3.3 Support Vector Machine

In this part, we will introduce another well-known classification model, which is named as the support
vector machine (SVM) [9]. SVM is a supervised learning algorithm that can analyze data used for
classification tasks. Given a set of training instances belonging to different classes, the SVM learning
algorithm aims at building a model that assigns the data instances to one class or the other, making
it a non-probabilistic binary linear classifier. In SVM, the data instances are represented as the points
in a feature space, which can be divided into two classes by a clear hyperplane learned by the model,
where the gap between the division boundary should be as wide as possible. New data instances will
be mapped into the same space and classified into a class depending on which side of the decision
boundary they fall in. In addition to performing linear classification, SVM can also efficiently perform
a non-linear classification using the kernel trick [9], implicitly mapping their inputs into a high-
dimensional feature space. In this part, we will introduce the SVM algorithm in detail, including its
objective function, dual problem, and the kernel trick.

jwzhanggy@gmail.com

2.3 Supervised Learning: Classification 41

2.3.3.1 AlgorithmOverview
Given a training set involving n labeled instances T = {(x1, y1), (x2, y2), . . . , (xn, yn)} belonging
to binary classes {+1,−1}, the SVM model aims at identifying a hyperplane to separate the data
instances. Formally, in the feature space, a division hyperplane can be represented as a linear function

w*x+ b = 0, (2.11)

where w = [w1, w2, . . . , wd]* denotes the scalars of each feature dimension. Scalar vector w also
denotes the direction of the hyperplane, and b indicates the shift of the hyperplane from the original
point.

For any data instance in the training set, e.g., (xi , yi) ∈ T , the distance from point xi to the division
hyperplane can be mathematically represented as

dxi =
|w*xi + b|

‖w‖ . (2.12)

For a good division hyperplane, it should be able to divide the data instances into different classes
correctly. In other words, for the data instance xi above the hyperplane, i.e., w*xi + b > 0, it should
belong to one class, e.g., the positive class with yi = +1. Meanwhile, for the data instance below
the hyperplane, it should belong to the other class, e.g., the negative class with yi = −1. To select
the optimal division hyperplane, SVM rescales the variables w and b to define two other hyperplanes
(namely, the positive and negative hyperplanes) with the following equations:

H+ : w*x+ b = +1, (2.13)

H− : w*x+ b = −1, (2.14)

such that the following equations can hold:
{
w*xi + b ≥ +1, ∀(xi , yi) ∈ T , if yi = +1,

w*xi + b ≤ +1, ∀(xi , yi) ∈ T , if yi = −1.
(2.15)

We know that the division hyperplane is parallel to the positive and negative hyperplanes defined
above with equal distance between them. Meanwhile, for the data instances which actually lie in
the positive and negative hyperplanes, they are called the support vectors. The distance between the
positive and negative hyperplanes can be formally represented as

d+,− = 2
‖w‖ . (2.16)

The SVM model aims at finding a classification hyperplane which can maximize the distance
between the positive and negative hyperplanes

(
or minimize ‖w‖2

2 equivalently
)
, while ensuring all

the data instances are correctly classified. Formally, the objective function of the SVM model can be
represented as

min
w,b

‖w‖2
2

,

s.t. yi(w*xi + b) ≥ 1,∀(xi , yi) ∈ T . (2.17)

jwzhanggy@gmail.com

42 2 Machine Learning Overview

The objective function is actually a convex quadratic programming problem involving d + 1
variables and n constraints, which can be solved with the existing convex programming toolkits.
However, solving the problem can be very time consuming. A more efficient way to address the
problem is to transform the problem to its dual problem and solve the dual problem instead, which
will be talked about in the following part.

2.3.3.2 Dual Problem
The primal objective function of SVM is convex. By applying the Lagrangian multiplier method, the
corresponding Lagrange function of the objective function can be represented as

L(w, b,α) = 1
2

‖w‖2 +
n∑

i=1

αi (1 − yi(w*xi + b)), (2.18)

where α = [α1,α2, . . . ,αn]* (αi ≥ 0) denotes the vector of multipliers.
By taking the partial derivatives of L(w, b,α) with regard to w, b and making them equal to 0, we

will have

∂L(w, b,α)
∂w

= w −
n∑

i=1

αiyixi = 0 ⇒ w =
n∑

i=1

αiyixi , (2.19)

∂L(w, b,α)
∂b

= −
n∑

i=1

αiyi = 0 ⇒
n∑

i=1

αiyi = 0. (2.20)

According to the representation, by replacing w and
∑n

i=1 αiyi with
∑n

i=1 αiyixi and 0 in
Eq. (2.18), respectively, we will have

L(w, b,α) =
n∑

i=1

αi −
1
2

n∑

i,j=1

αiαj yiyjx*
i xj . (2.21)

With the above derivatives, we can achieve a new representation of L(w, b,α) together with the
constraints αi ≥ 0,∀i ∈ {1, 2, . . . , n} and∑n

i=1 αiyi = 0, which actually defines the dual problem of
the objective function:

max
α

n∑

i=1

αi −
1
2

n∑

i,j=1

αiαj yiyjx*
i xj

s.t.

n∑

i=1

αiyi = 0,

αi ≥ 0,∀i ∈ {1, 2, . . . , n}. (2.22)

Why should we introduce the dual problem? To answer this question, we need to introduce an
important function property as follows. For function L(w, b,α), we have

max
α

min
w,b

L(w, b,α) ≤ min
w,b

max
α

L(w, b,α). (2.23)

The proof to the above property will be left as an exercise at the end of this chapter.

jwzhanggy@gmail.com

2.3 Supervised Learning: Classification 43

In other words, the optimal dual problem actually defines an upper bound of the optimal solution
to the primal problem. Here, we know 1

2‖w‖2 is convex and w*x + b is affine. In Eq. (2.23), the
equal sign = can be achieved iff w, b, and α can meet the following KKT (Karush-Kuhn-Tucker) [9]
conditions:

αi ≥ 0,

yi(w*xi + b) − 1 ≥ 0,

αi (yi(w*xi + b) − 1) = 0.

(2.24)

In other words, in such a case, by solving the dual problem, we will be able to achieve the primal
problem as well.

According to the third KKT conditions, we observe that ∀(xi , yi) ∈ T , at least one of the following
two equations must hold:

αi = 0, (2.25)

yi(w*xi + b) = 1. (2.26)

For the data instances with the corresponding αi = 0, they will not actually appear in the objective
function of neither the primal nor the dual problem. In other words, these data instances are “useless”
in determining the model variables (or the decision boundary). Meanwhile, for the data instances with
yi(w*xi + b) = 1, i.e., those data points lying in the positive and negative hyperplanes H+ and H−,
we need to learn their corresponding optimal multiplier scalar αi , which will affect the final learned
models. Therefore, the SVM model variables will be mainly determined by these support vectors,
which is also the reason why the model is named as the support vector machine.

As we can observe, the dual problem is also a quadratic programming problem involving n

variables and n constraints. However, in many cases, solving the dual problem is still much more
efficiently than solving the primal, especially when d / n. Solving the dual objective function doesn’t
depend on the dimension of the feature vectors, which is very important for feature vectors of a large
dimension or the application of kernel tricks when the data instances are not linearly separable.

Therefore, by deriving and addressing the dual problem, we will be able to understand that support
vectors play an important role in determining the classification boundary of the SVM model. In
addition, the dual problem also provides the opportunity for the efficient model learning especially
with the kernel tricks to be introduced in the following part.

Some efficient learning algorithms have been proposed to solve the dual objective function, like
SMO (sequential minimal optimization) algorithm [36], which will further reduce the learning cost.
We will not introduce SMO here, since it is not the main focus of this textbook. Based on the learned
optimal α∗, we can obtain the optimal w∗ and b∗ variables of the SVM model, which will be used to
classify the future data instances (e.g., featured by vector x) based on the sign of function (w∗)*x+b∗.

2.3.3.3 Kernel Trick
In the case when the data instances are not linearly separable, one effective way to handle the problem
is to project the data instances to a high-dimensional feature space, in which the data instances will be
linearly separable by a hyperplane, and such a technique is called the kernel trick (or kernel method)
[9]. The kernel trick has been shown to be very effective when applied in SVM, which allows SVM to
classify the data instances following very complicated distributions.

jwzhanggy@gmail.com

44 2 Machine Learning Overview

Fig. 2.12 An example of
kernel function in SVM

x1

x2
φ

φ : (x1 2) → (x2
1,

√
2x1x2,x ,x2

2)

z1

z2

z3

Example 2.3 In Fig. 2.12, we show an example to illustrate the kernel trick with SVM. Given a group
of data instances in two different classes, where the red circle denotes the positive class and the blue
square denotes the negative class. According to the data instance distribution in the original feature
space (represented by two features x1 and x2), we observe that they cannot be linearly separated
by drawing a line actually. To divide these data instances, a non-linear division boundary will be
needed, i.e., the dashed line in black. Meanwhile, if we project the data instances from the two-
dimensional feature space to a three-dimensional feature space with the indicated kernel function
φ : (x1, x2) → (x21 ,

√
2x1x2, x22), we can observe that those data instances will become linearly

separable with a hyperplane in the new feature space.

Formally, let φ : Rd → RD be a mapping that projects the data instances from a d-dimensional
feature space to another D-dimensional feature space. In the new feature space, let’s assume the data
instances can be linearly separated by a hyperplane in the SVM model. Formally, the hyperplane that
can separate the data instances can be represented as

w*φ(x)+ b = 0, (2.27)

where w = [w1, w2, . . . , wD]* and b are the variables to be learned in the model.
According to Sect. 2.3.3.2, the primal and dual optimization objective functions of the SVM model

in the new feature space can be formally represented as

min
w

1
2

‖w‖2

s.t. yi(w*φ(xi)+ b) ≥ 1, i = 1, 2, . . . , n; (2.28)

and

max
α

n∑

i=1

αi −
1
2

n∑

i,j=1

αiαj yiyjφ(xi)*φ(xj)

s.t.

n∑

i=1

αiyi = 0,

αi ≥ 0,∀i ∈ {1, 2, . . . , n}. (2.29)

jwzhanggy@gmail.com

2.3 Supervised Learning: Classification 45

Here, φ(xi)*φ(xj) denotes the inner projection of two projected feature vectors, calculation cost
of which will be very expensive if the new feature space dimension D is very large. For simplicity,
we introduce a new notation κ(xi , xj) to represent φ(xi)*φ(xj), and rewrite the above dual objective
function as follows:

max
α

n∑

i=1

αi −
1
2

n∑

i,j=1

αiαj yiyjκ(xi , xj)

s.t.

n∑

i=1

αiyi = 0,

αi ≥ 0,∀i ∈ {1, 2, . . . , n}. (2.30)

By solving the above function, we can obtain the optimal α∗, based on which the classifier function
can be represented as

f (x) = (w∗)φ(x)+ b∗

=
n∑

i=1

α∗
i yiφ(xi)

*φ(x)+ b

=
n∑

i=1

α∗
i yiκ(xi , x)+ b, (2.31)

where w∗ =∑n
i=1 α∗

i yiφ(xi)
* according to the derivatives in Eq. (2.19).

We can observe that in both the training and testing processes, we don’t really need the concrete
representations of the projected feature vectors {φ(xi)}xi but a frequent calculation of κ(·, ·) will be
needed instead. The representation of κ(·, ·) is determined by the definition of the projection function
φ(·). Formally, the function κ(·, ·) is defined as the kernel function in SVM (it has also been widely
applied in many other learning algorithms). If the calculation cost of κ(·, ·) is lower than that of
φ(xi)*φ(xj), based on the kernel function, the overall learning cost of non-linear SVM will be reduced
greatly.

Example 2.4 Let φ([x1, x2]*) = [x21 ,
√
2x1x2, x22]* be a function which projects the data instances

from a two-dimensional feature space to a three-dimensional feature space. Let x = [x1, x2]* and
z = [z1, z2]* be two feature vectors, we can represent the inner product of φ(x) and φ(z) as

φ(x)*φ(z) =
[
x21 ,

√
2x1x2, x22

] [
z21,

√
2z1z2, z22

]*

= x21z
2
1 + 2x1x2z1z2 + x22z

2
2

= (x1z1 + x2z2)
2

= (x*z)2. (2.32)

Computing the inner product with the kernel function κ(x, z) = (x*z)2 involves an inner product
operation in a two-dimensional feature space (i.e., x*z = [x1, x2][z1, z2]*) and a real-value square
operation (i.e., (x*z)2), whose cost is lower than that introduced in feature vector projection and the

jwzhanggy@gmail.com

46 2 Machine Learning Overview

inner product operation in the 3-dimension space with equation, i.e., φ(x), φ(z) and φ(x)*φ(z) =
[x21 , x22 ,

√
2x1x2][z21, z22,

√
2z1z2]*.

The advantages of applying the kernel function in training non-linear SVMwill be more significant
in the case where d 1 D. Normally, instead of defining the projection function φ(·), we can define the
kernel function κ(·, ·) directly. Some frequently used kernel functions in SVM are listed as follows:

• Polynomial Kernel: κ(x, z) = (x*z+ θ)d (d ≥ 1).
• Gaussian RBF Kernel: κ(x, z) = exp

(
−‖x−z‖2

2σ 2

)
(σ > 0).

• Laplacian Kernel: κ(x, z) = exp
(
−‖x−z‖

2σ

)
(σ > 0).

• Sigmoid Kernel: κ(x, z) = tanh(βx*z+ θ) (β > 0, θ < 0).

Besides these aforementioned functions, there also exist many other kernel functions used in either
SVM or the other learning models, which will not be introduced here.

2.4 Supervised Learning: Regression

Besides the classification problem, another important category of supervised learning tasks is
regression. In this section, we will introduce the regression learning task, as well as three well-known
regression models, i.e., linear regression [55], Lasso, [50] and Ridge [20], respectively.

2.4.1 Regression Learning Task

Regression differs from classification tasks in the domain of labels. Instead of inferring the pre-
defined classes that the data instances belong to, regression tasks aim at predicting some real-value
attributes for the data instances, like the box office of movies, price of stocks, and population of
countries. Formally, given the training data T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi =
[xi,1, xi,1, . . . , xi,d]* ∈ Rd and yi ∈ R, regression tasks aim at building a model that can predict
the real-value labels yi based on the feature vector xi representation of the data instances. In this
section, we will take the regression models which combine the features linearly as an example, whose
predicted label can be represented as

ŷi = w0 + w1xi,1 + w2xi,2 + · · · + wdxi,d , (2.33)

where w = [w0, w1, w2, . . . , wd]* denotes the weight and bias variables of the regression model.
Generally, by minimizing the difference between the predicted labels and the ground truth labels,

we can learn the parameter w in the model. Depending on the loss objective function representations,
three different regression models, i.e., linear regression [55], Lasso [50], and Ridge [20], will be
introduced as follows.

2.4.2 Linear Regression

Given the training set T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, the linear regression model adopts
the mean square error as the loss function, which computes the average square error between the

jwzhanggy@gmail.com

2.4 Supervised Learning: Regression 47

prediction labels and the ground-truth labels of the training data instances. Formally, the optimal
parameter w∗ can be represented as

w∗ = argwminE(ŷ, y)

= argwmin
1
n

n∑

i=1

(ŷi − yi)
2

= argwmin
1
n

‖Xw − y‖22 , (2.34)

where X =
[
x̄*
1 , x̄

*
2 , . . . , x̄

*
n

]
∈ Rn×(d+1) and y = [y1, y2, . . . , yn]* denote the feature matrix and

label vectors of the training instances. In the representation, vector x̄i = [xi,1, xi,1, . . . , xi,d , 1]* ∈
R(d+1), where a dummy feature +1 is appended to the feature vectors so as to incorporate the bias
term w0 also as a feature weight in model learning.

The mean square error used in the linear regression model has very a good mathematical property.
Meanwhile, the method of computing the minimum loss based on the mean square error is also called
the least square method. In linear regression, the least square method aims at finding a hyperplane,
the sum of distance between which and the training instances can be minimized. The above objective
function can be resolved by making derivative of the error term regarding the parameter w equal to 0,
and we can have

∂E(ŷ, y)
∂w

= 2X*(Xw − y) = 0

⇒ X*Xw = X*y, (2.35)

Here, to obtain the closed-form optimal solution of w∗, it needs to involve matrix inverse operation
of X*X. Depending on whether X*X is invertible or not, there will be different solutions to the above
objective function:

• If matrix X*X is of full rank or X*X is positive definite, we have

w∗ = (X*X)−1X*y. (2.36)

• However, in the case that X*X is not full rank, there will be multiple solutions to the above
objective function. For the linear regression model, all these solutions will lead to the minimum
loss. Meanwhile, in some cases, there will be some preference about certain types of parameter w,
which can be represented as the regularization term added to the objective function, like the Lasso
and Ridge regression models to be introduced as follows.

2.4.3 Lasso

Lasso [50] is also a linear model that estimates sparse coefficients. It is useful in some contexts due
to its tendency to prefer solutions with fewer parameter values, effectively reducing the number of
variables upon which the given solution is dependent. For this reason, Lasso and its variants are

jwzhanggy@gmail.com

48 2 Machine Learning Overview

fundamental to the field of compressed sensing. Under certain conditions, it can recover the exact set
of non-zero weights. Mathematically, the objective function of Lasso can be represented as

argwmin
1
2n

‖Xw − y‖22 + α · ‖w‖1 , (2.37)

where the coefficient vector w is regularized by its L1-norm, i.e., ‖w‖1.
Considering that the L1-norm regularizer ‖w‖1 is not differentiable, and no closed-form solution

exists for the above objective function. Meanwhile, a wide variety of techniques from convex
analysis and optimization theory have been developed to extremize such functions, which include
the subgradient methods [10], least-angle regression (LARS) [11], and proximal gradient methods
[32]. As to the choice of scalar α, it can be selected based on a validation set of the data instances.

In addition to the regression models in the linear form, there also exist a large number of regression
models in the high-order polynomial representation, as well as more complicated representations.
For more information about the other regression models, their learning approaches and application
scenarios, please refer to [41] for more detailed information.

2.4.4 Ridge

Ridge [20] addresses some of the problems of ordinary least squares (OLS) by imposing a penalty on
the size of coefficient w. The ridge coefficients minimize a penalized residual sum of squares, i.e.,

argwmin ‖Xw − y‖22 + α · ‖w‖22 , (2.38)

where α > 0 denotes the complexity parameter used to control the size shrinkage of coefficient
vector w.

Generally, a larger α will lead to a greater shrinkage of coefficientw and thus the coefficient will be
more robust to collinearity. Learning of the optimal coefficient w∗ of the ridge regressionmodel is the
same as the learning process of the linear regression model, and the optimal w∗ can be represented as

w∗ = (X*X+ αI)−1X*y. (2.39)

Here, we observe that the optimal solution depends on the choice of the scalar α a lot. As α → 0, the
optimal solution w∗ will be equal to the solution to the linear regression model, while as α → ∞,
w∗ → 0. In the real-world practice, the optimal scalar α can usually be selected based on the validation
set partitioned from cross validation.

2.5 Unsupervised Learning: Clustering

Different from the supervised learning tasks, in many cases, no supervision information is available
to guide the model learning and the data instances available have no specific object labels at all.
The tasks of learning some inner rules and patterns from such unlabeled data instances are formally
called the unsupervised learning tasks, which actually provide some basic information for further
data analysis. Unsupervised learning involves very diverse learning tasks, among which clustering
can be the main research focus and has very broad applications. In this section, we will introduce the

jwzhanggy@gmail.com

2.5 Unsupervised Learning: Clustering 49

clustering learning tasks and cover three well-used clustering algorithms, including K-Means [16],
DBSCAN [12], and Mixture-of-Gaussian [40].

2.5.1 Clustering Task

Clustering tasks aim at partitioning the data instances into different groups, where instances in each
cluster are more similar to each other compared with those from other clusters. For instance, movies
can be divided into different genres (e.g., comedy vs tragedy vs Sci-fi), countries can be partitioned
into different categories (e.g., developing countries vs developed countries), a basket of fruits can be
grouped into different types (e.g., apple vs orange vs banana). Generally, in real-world applications,
clustering can be used as a single data mining procedure or a data pre-processing step to divide the
data instances into different categories.

Formally, in the clustering tasks, the unlabeled data instances can be represented as set D =
{x1, x2, . . . , xn}, where each data instance can be represented as a d-dimensional feature vector
xi = [xi,1, xi,2, . . . , xi,d]*. Clustering tasks aim at partitioning the data instances into k disjoint
groups C = {C1, C2, . . . , Ck}, where Ci ⊂ D,∀i ∈ {1, 2, . . . , k}, while Ci ∩ Cj = ∅,∀i, j ∈
{1, 2, . . . , k}, i)= j , and

⋃
i Ci = D. Generally, we can use the cluster index yi ∈ {1, 2, . . . , k}

to indicate the cluster ID that instance xi belongs to, and the cluster labels of all the data instances in
D can be represented as a vector y = [y1, y2, . . . , yn]*.

In clustering tasks, a formal definition of the distance among the data instances is required, and
many existing clustering algorithms heavily rely on the data instance distance definition. Given a
function dist (·, ·) : D ×D → R, it can be defined as a distance measure iff it can meet the following
properties:

• Non-negative: dist (xi , xj) ≥ 0,
• Identity: dist (xi , xj) = 0 iff. xi = xj ,
• Symmetric: dist (xi , xj) = dist (xj , xi),
• Triangular Inequality: dist (xi , xj) ≤ dist (xi , xk)+ dist (xk, xj).

Given two data instances featured by vectors xi = [xi,1, xi,2, . . . , xi,d]* and xj =
[xj,1, xj,2, . . . , xj,d]*, a frequently used distance measure is the Minkowski distance:

dist (xi , xj) =
(

d∑

k=1

|xi,k − xj,k|p
) 1

p

. (2.40)

The Minkowski distance is a general distance representation, and it covers various well-known
distance measures depending on the selection of value p:

• Manhattan Distance: in the case that p = 1, we have distm(xi , xj) =
∑d

k=1 |xi,k − xj,k|.
• Euclidean Distance: in the case that p = 2, we have diste(xi , xj) =

(∑d
k=1 |xi,k − xj,k|2

) 1
2 .

• Chebyshev Distance: in the case that p → ∞, we have distc(xi , xj) = max({|xi,k − xj,k|}dk=1).

Besides the Minkowski distance, there also exist many other distance measures, like VDM (value
difference metric), which works well for the unordered attributes. In many cases, different attributes
actually play a different role in the distance calculation and should be weighted differently. Some

jwzhanggy@gmail.com

50 2 Machine Learning Overview

distance metrics assign different weights to the attributes to differentiate them. For instance, based on
the Minkowski distance, we can define the weighted Minkowski distance to be

distw =
(

d∑

k=1

wk · |xi,k − xj,k|p
) 1

p

, (2.41)

where wi ≥ 0,∀i ∈ {1, 2, . . . , d} and∑d
k=1wi = 1.

Generally, clustering tasks aim at grouping similar data instances (i.e., with a smaller distance)
into the same cluster, while different data instances (i.e., with a larger distance) into different clusters.
Meanwhile, depending on the data instance-cluster belonging relationships, the clustering tasks can
be categorized into two types: (1) hard clustering: each data instance belongs to exact one cluster,
and (2) soft clustering: data instances can belong to multiple clusters with certain confidence scores.
In the following part of this section, we will introduce two hard clustering algorithms: K-Means [16]
and DBSCAN [12], and one soft clustering algorithm: Mixture-of-Gaussian [40].

2.5.2 K-Means

In the unlabeled data set, the data instances usually belong to different groups. In each of the groups,
there can exist a representative data instance which can outline the characteristics of the group internal
data instances. Therefore, after identifying the prototype data instances, the clusters can be discovered
easily. Meanwhile, how to define the cluster prototypes is an open problem, and many different
algorithms have been proposed already, among which K-Means [16] is one of the most well-known
clustering algorithms.

Let D = {x1, x2, . . . , xn} be the set of unlabeled data instances, and K-Means algorithm aims at
partitioning D into k clusters C = {C1, C2, . . . , Ck}. For the data instances belonging to each cluster,
the cluster prototype data instance is defined as the center of the cluster in K-Means, i.e., the mean of
the data instance vectors. For instance, for cluster Ci , its center can be represented as follows formally:

µi =
1
|Ci |

∑

x∈Ci
x,∀Ci ∈ C. (2.42)

There can exist different ways to partition the data instances, to select the optimal one from which
a clear definition of clustering quality will be required. In K-Means, the quality of the clustering result
C = {C1, C2, . . . , Ck} can be measured by the introduced square of the Euclidean distance between the
data instances and the prototypes, i.e.,

E(C) =
k∑

i=1

∑

x∈Ci

∥∥x − µi

∥∥2
2 . (2.43)

Literally, the clustering result which can minimize the above loss term will bring about a very good
partition about the data instances. However, identifying the optimal prototypes and the cluster partition
by minimizing the above square loss is a very challenging problem, which is actually NP-hard. To
address such a challenge, the K-Means algorithm adopts a greedy strategy to find the prototypes and
cluster division iteratively. The pseudo-code of the K-Means algorithm is available in Algorithm 2.
As shown in the algorithm, in the first step, K-Means algorithm first randomly picks k data instances

jwzhanggy@gmail.com

2.5 Unsupervised Learning: Clustering 51

Algorithm 2 KMeans
Require: Data Set D = {x1, x2, · · · , xn};

Cluster number k.
Ensure: Clusters C = {C1, C2, · · · , Ck}
1: Randomly pick k data instances from D as the prototype data instances {µ1,µ2, · · · ,µk}
2: Stable-tag = False
3: while Stable-tag == False do
4: Let Ci = ∅, ∀i = 1, 2, · · · , k
5: for data instance xi ∈ D do
6: λ = argj∈{1,2,··· ,k} min dist (xi − µj)
7: Cλ = Cλ ∪ {xi}
8: end for
9: end while
10: for j ∈ {1, 2, · · · , k} do
11: compute the new prototype data instance µ′

j = 1
|Cj |
∑

x∈Cj
x

12: if {µ1,µ2, · · · ,µk} == {µ′
1,µ

′
2, · · · ,µ′

k} then
13: Stable-tag = T rue
14: else
15: {µ1,µ2, · · · ,µk} = {µ′

1,µ
′
2, · · · ,µ′

k}
16: end if
17: end for
18: Return C = {C1, C2, · · · , Ck}

from D as the prototypes, and the data instances will be assigned to the clusters centered by these
prototypes. For each data instance xi ∈ D, K-Means selects the prototype µj closest to xi , and adds
xi to cluster Cj , where the distance measure dist (xi − µj) can be the Euclidean distance between
xi and µj (or the other distance measures we define before). Based on the obtained clustering result,
K-Means re-computes the prototype centers of each newly generated clusters, which will be treated
as the new prototypes. If in the current round, none of the prototypes changes, K-Means will return
the current data instance partition as the final clustering result.

Example 2.5 In Fig. 2.13, we use an example to further illustrate theK-Means algorithm. For instance,
given a group of data instance as shown in Fig. 2.13a, K-Means first randomly selects three points as
the centers from the space as shown in Fig. 2.13b. All the data instances will be assigned to their
nearest centers, and they will form three initial clusters (in three different colors) as illustrated in
Fig. 2.13c. Based on the initial clustering results, K-Means recomputes the centers as the average of
the cluster internal data instances in Fig. 2.13d, and further partitions the data set with the new centers
in Fig. 2.13e. As the results converge and there exist no changes for partition, the K-Means algorithm
will stop and output the final data partition results.

The K-Means algorithm is very powerful in handling data sets from various areas, but may also
suffer from many problems. According to the algorithm descriptions and the example, we observe that
the performance of K-Means is quite sensitive to the initial selection of prototypes, especially in the
case when the number of data instance is not so large. Furthermore, in K-Means, the hyperparameter
k needs to be selected beforehand, which is actually very challenging to infer from the data without
knowing the distributions of the data. It will also introduce lots of parameter tuning works for K-
Means. Next, we will introduce a density-based clustering algorithm, named DBSCAN, which doesn’t
need the cluster number parameter k as the input.

jwzhanggy@gmail.com

52 2 Machine Learning Overview

Fig. 2.13 An example of the K-Means algorithm in partitioning data instances ((a) input data instances; (b)–(f) steps
of K-Means in clustering the data input)

2.5.3 DBSCAN

DBSCAN [12] is short for density-based spatial clustering of applications with noise, and it is a
density-based clustering algorithm, which assumes that the cluster number and cluster structure can
be revealed by the data instance distribution density. Generally, density-based clustering algorithms
are based on the connectivity relationships among data instances, via which data instances can keep
expanding until achieving the final clustering results. To characterize the connectivity relationships
among data instances, DBSCAN introduces a concept called neighborhood parameterized by (ε, η).
Given a data set D = {x1, x2, . . . , xn} involving n data instances, several important concepts used in
DBSCAN are defined as follows:

• ε-Neighborhood: For data instance xi ∈ D, its ε-neighborhood represents a subset of data
instances from D, with a distance shorter than ε from xi , i.e., Nε(xi) = {xj ∈ D|dist (xi , xj) ≤ ε}
(function dist (·, ·) denotes the Euclidean distance by default).

• Core Objects: Based on the data instances and their corresponding ε-neighborhoods, the core
objects denote the data instances whose ε-neighborhood contains at least η data instances. In other
words, data instance xi is a core object iff |Nε(xi)| ≥ η.

• Directly Density-Reachable: If data instance xj lies in the ε-neighborhood of xi , xj is said to be
directly density-reachable from xi , i.e., xi → xj .

• Density-Reachable: Given two data instances xi and xj , xj is said to be density-reachable from
xi iff there exists a path v1 → v2 → · · · → vk−1 → vk connecting xi with xj , where vl ∈ D and
v1 = xi , vk = xj . Sequence vl → vl+1 represents that vl+1 is directly density-reachable from vl .

jwzhanggy@gmail.com

2.5 Unsupervised Learning: Clustering 53

Algorithm 3 DBSCAN
Require: Data Set D = {x1, x2, · · · , xn};

Neighborhood parameters (ε, η).
Ensure: Clusters C = {C1, C2, · · · , Ck}
1: Initialize core object set Ω = ∅
2: for xi ∈ D do
3: Obtain the ε-neighborhood of xi : Nε(xi)
4: if |Nε(xi)| ≥ η then
5: Ω = Ω ∪ {xi}
6: end if
7: end for
8: Initialize cluster number k = 0 and unvisited data instance set Γ = D
9: while Ω)= ∅ do
10: Keep a record of current unvisited data instances Γ ′ = Γ
11: Randomly select a data instance o ∈ Ω to initialize a queue Q = (o)
12: Γ = Γ \ {o}
13: while Q)= ∅ do
14: Get the head data instance q ∈ Q
15: if |Nε(q)| ≥ η then
16: Add Nε(q) ∩ Γ into queue Q
17: Γ = Γ \Nε(q)
18: end if
19: end while
20: k = k + 1, and generate cluster Ck = Γ ′ \ Γ
21: Ω = Ω \ Ck
22: end while
23: Return C = {C1, C2, · · · , Ck}

• Density-Connected: Given two data instance xi and xj , xi is said to be density-connected to xj ,
iff ∃xk ∈ D that xi and xj are both density-reachable from xk .

DBSCAN aims at partitioning the data instances into several densely distributed regions. In
DBSCAN, a cluster denotes a maximal subset of data instances, in which the data instances are density-
connected. Formally, a subset Ck ⊂ D is a cluster detected by DBSCAN iff both the following two
properties hold:

• Connectivity: ∀xi , xj ∈ Ck , xi and xj are density-connected.
• Maximality: ∀xi ∈ Ck, xj ∈ D, xj is density-reachable from xi implies xj ∈ Ck .

To illustrate how DBSCAN works, we provide its pseudo-code in Algorithm 3. According to the
algorithm, at the beginning, DBSCAN selects a set of core objects as the seeds, from which DBSCAN
expands the clusters based on the ε-neighborhood concept introduced before iteratively to find the
density-reachable clusters. Such a process continues until all the core objects have been visited. The
performance of DBSCAN depends on the selection order of the seed data instances a lot, and different
selection orders will lead to totally different clustering results. DBSCAN doesn’t need the cluster
number as the input parameter, but requires (ε, η) to define the ε-neighborhood and core objects of
the data instances.

Both the K-Means and DBSCAN algorithms are actually hard clustering algorithms, where
instances are partitioned into different groups and each data instance only belongs to one single
cluster. Besides such a type of clustering algorithms, there also exist some other clustering algorithms
that allow data instances to belong to multiple clusters at the same time, like theMixture-of-Gaussian
algorithm to be introduced in the next subsection.

jwzhanggy@gmail.com

54 2 Machine Learning Overview

2.5.4 Mixture-of-Gaussian Soft Clustering

Different from the previous two clustering algorithms, the Mixture-of-Gaussian clustering algorithm
[40] uses probability to model the cluster prototypes. Formally, in the d-dimensional feature space,
given a feature vector x that follows a certain distribution, e.g., the Gaussian distribution, its
probability density function can be represented as

p(x|µ,Σ) = 1

(2π)
d
2 |Σ | 12

× exp
(
−1
2
(x − µ)*Σ(x − µ)

)
, (2.44)

where µ denotes the d-dimensional mean vector and Σ is a d × d covariance matrix.
In the Mixture-of-Gaussian clustering algorithm, each cluster is represented by a Gaussian

distribution, where µj and Σj can denote the parameters of the j th Gaussian distribution. Formally,
the probability density function of theMixture-of-Gaussian distribution can be represented as

pM(x) =
k∑

j=1

αj · p(x|µj ,Σj), (2.45)

where αj denotes the mixture coefficient and
∑k

j=1 αj = 1.
The data instances in the training set D = {x1, x2, . . . , xn} are assumed to be generated from the

Mixture-of-Gaussian distribution. Given a data instance xi ∈ D, the probability that the data instance
is generated by the j th Gaussian distribution (i.e., its cluster label yi = j) can be represented as

pM(yi = j |xi) =
p(yi = j) · p(xi |yi = j)

pM(xi)

= αj · p(xi |µj ,Σj)
∑k

l=1 αl · p(xi |µl ,Σ l)
. (2.46)

Meanwhile, in theMixture-of-Gaussian clustering algorithm, a set of parameters {µj }kj=1, {Σj }kj=1

and {αj }kj=1 are involved, which can be inferred from the data. Formally, based on the data set D, we
can represent its log-likelihood for the data instances to be distributed by following the Mixture-of-
Gaussian to be

L(D) = ln

(
n∏

i=1

pM(xi)

)

=
n∑

i=1

ln

k∑

j=1

αj · p(xi |µj ,Σj)

 . (2.47)

For the parameters which can maximize the above log-likelihood function will be the optimal solution
to the Mixture-of-Gaussian model.

jwzhanggy@gmail.com

2.5 Unsupervised Learning: Clustering 55

The EM (Expectation Maximization) algorithm can be applied to learn the optimal parameters for
theMixture-of-Gaussian clustering algorithm. By taking the derivatives of the objective function with
regard to µj and Σj and making them equal to 0, we can have

µj =

∑n
i=1 pM(yi=j |xi)xi∑n
i=1 pM(yi=j |xi) ,

Σj =
∑n

i=1 pM(yi=j |xi)(xi−µj)(xi−µj)
*

∑n
i=1 pM(yi=j |xi) .

(2.48)

As to the weights {αj }kj=1, besides the objective function, there also exist some constraints αj ≥ 0

and
∑k

j=1 αj = 1 on them. We can represent the Lagrange function of the objective function to be

L({αj }kj=1, λ) =
n∑

i=1

ln

k∑

j=1

αj · p(xi |µj ,Σj)

+ λ

k∑

j=1

αj − 1

 . (2.49)

By making the derivative of the above function to αj equal to 0, we can have

n∑

i=1

p(xi |µj ,Σj)
∑k

l=1 αl · p(xi |µl)
+ λ = 0. (2.50)

Meanwhile, by multiplying the above equation by αj and summing up the equations by enumerat-
ing all Gaussian distribution prototypes, we have

k∑

j=1

n∑

i=1

αj · p(xi |µj ,Σj)
∑k

l=1 αl · p(xi |µl ,Σ l)
+

k∑

j=1

αj · λ = 0

⇒
k∑

j=1

n∑

i=1

pM(yi = j |xi)+ λ = 0

⇒ λ = −n. (2.51)

Furthermore, we have

n∑

i=1

αj · p(xi |µj ,Σj)
∑k

l=1 αl · p(xi |µl ,Σ l)
+ λ · αj = 0

⇒
n∑

i=1

pM(yi = j |xi)+ λ · αj = 0

⇒ αj = 1
−λ

n∑

i=1

pM(yi = j |xi)

= 1
n

n∑

i=1

pM(yi = j |xi). (2.52)

jwzhanggy@gmail.com

56 2 Machine Learning Overview

Algorithm 4 Mixture-of-Gaussian
Require: Data Set D = {x1, x2, · · · , xn};

Gaussian distribution prototype number k.
Ensure: Clusters C = {C1, C2, · · · , Ck}
1: Initialize the parameters {αj ,µj ,Σj)}kj=1
2: Converge − tag = False
3: while Converge − tag == False do
4: for i ∈ {1, 2, · · · , n} do
5: Calculate the posterior probability pM(yi = j |xi)
6: end for
7: for j ∈ {1, 2, · · · , k} do
8: Calculate new mean vector µ′

j =
∑n

i=1 pM(yi=j |xi)xi∑n
i=1 pM(yi=j |xi)

9: Calculate new covariance matrix Σ ′
j =

∑n
i=1 pM(yi=j |xi)(xi−µj)(xi−µj)

*
∑n

i=1 pM(yi=j |xi)
10: Calculate new weight α′

j = 1
n

∑n
i=1 pM(zi = j |xi)

11: end for
12: if {αj ,µj ,Σj)}kj=1 == {α′

j ,µ
′
j ,Σ

′
j)}kj=1 then

13: Converge − tag = T rue
14: else
15: {αj ,µj ,Σj)}kj=1 = {α′

j ,µ
′
j ,Σ

′
j)}kj=1

16: end if
17: end while
18: Initialize C = {Cj }kj=1, where Cj = ∅
19: for xi ∈ D do
20: Determine the cluster label y∗

i = argy∈{1,2,··· ,k} pM(yi = y|xi)
21: Cy∗

i
= Cy∗

i
∪ {xi}

22: end for
23: Return C = {C1, C2, · · · , Ck}

According to the analysis, the expected values of µj and Σj are the weighted sum of the mean
and covariance of the data instances in the provided data set. Meanwhile, weight αj is the average
posterior probability of data instance belonging to the j th Gaussian distribution. The pseudo-code
of parameter learning and cluster inference parts of the Mixture-of-Gaussian clustering algorithm is
provided in Algorithm 4.

2.6 Artificial Neural Network and Deep Learning

Artificial neural network (ANN) is a computational algorithm aiming at modeling the way that a
biological brain solves problems with large clusters of connected biological neurons. Artificial neural
network models include both supervised and unsupervised learning models, which can work on both
classification and regression tasks. Artificial neural networks as well as the recent deep learning [14]
models have achieved a remarkable success in addressing various difficult learning tasks. Therefore,
we lift them up as a separate section to talk about. In this part, we will provide a brief introduction to
the artificial neural networks, including the basic background knowledge, perceptron [30, 42], multi-
layer feed-forward neural network [48], error back propagation algorithm [43–45, 54], and several
well-known deep learning models, i.e., deep autoencoder [14,53], deep recurrent neural network [14],
and deep convolutional neural network [14, 26, 27].

jwzhanggy@gmail.com

2.6 Artificial Neural Network and Deep Learning 57

Fig. 2.14 A picture of
neuron

2.6.1 Artificial Neural Network Overview

As shown in Fig. 2.14, human brains are composed by a group of neurons, which are connected
by the axons and dendrites. In human brains, signal can transmit from a neuron to another one via
the axon and dendrite. The connecting point between axon and dendrite is called the synapse, where
human brains can learn new knowledge by changing the connection strength of these synapses. Similar
to the biological brain network, artificial neural networks are composed of a group of connected
artificial neurons, which receive inputs from the other neurons. Depending on the inputs and the
activation thresholds, artificial neurons can be either activated to transmit information to the other
artificial neuron or stay inactive.

In Fig. 2.15a, we show an example of the classic McCulloch-Pitts (M-P) neuron model [29]. As
shown in the model, the neuron takes the inputs {x1, x2, . . . , xn} from n other neurons and its output
can be represented as y. The connection weights between other neurons and the current neuron can
be denoted as {w1, w2, . . . , wn}, and the inherent activating threshold of the current neuron can be
represented as θ . The output y of the current neuron depends on both the inputs {x1, x2, . . . , xn},
connection weights {w1, w2, . . . , wn}, and the activating threshold θ . Formally, the output of the
current neuron can be represented as

y = f

(
n∑

i=1

wixi − θ

)

, (2.53)

where f (·) is usually called the activation function. Activation function can project the input signals
to the objective output, and many different activation functions can be used in the real-world
applications, like the sign function and sigmoid function.

Formally, the sign function can be represented as

f (x) =
{
1, if x > 0;
0, otherwise.

(2.54)

In the case where the sign function is used as the activation function, if the weighted input sum
received from the other neurons is greater than the current neuron’s threshold, the current neuron will

jwzhanggy@gmail.com

58 2 Machine Learning Overview

x1

x2

xi

xn

wn

wi

w1

w2 y
θ

current neuron

thresholdconnection weight
with the i-th neuron

input from
the i-th neuron

y = f(n
i=1 wixi − θ)output

(a)
x1 x2

w1 w2

y

input layer

output layer

(b)

x1 x2

y

+1 +1-1 -1

+1 +1

0.50.5

0.5

A B

C D

E

(c) (d)

Fig. 2.15 Neural network models: (a) McCulloch-Pitts (M-P) neuron model, (b) perceptron mode, (c) multi-layer
perceptron model, and (d) multi-layer feed-forward model

be activated and output 1; otherwise, the output will be 0. The sign function is very simple, and works
well in modeling the active/inactive states of the neurons. However, the mathematical properties, like
discontinuous and nonsmooth, of the sign function are not good, which render the sign function rarely
used in real-world artificial neural network models.

Different from the signed function, the sigmoid function is a continuous, smooth, and differentiable
function. Formally, the sigmoid function can be represented as

f (x) = 1
1+ e−x

, (2.55)

which outputs a value in the (0, 1) range for all inputs x ∈ R. When the sigmoid function is used as
the activation function, if the input is greater than the neuron’s activation threshold, the output will
be greater than 0.5 and will approach 1 as the weighted input sum further increases; otherwise, the
output will be smaller than 0.5 and approaches 0 when the weighted input sum further decreases.

2.6.1.1 Perceptron andMulti-Layer Feed-Forward Neural Network
Based on the M-P neuron, several neural network algorithms have already been proposed. In this
part, we will introduce two classic artificial neural network models: (1) perceptron [30, 42] and (2)
multi-layer feed-forward neural network [48].

jwzhanggy@gmail.com

2.6 Artificial Neural Network and Deep Learning 59

The architecture of perceptron [30, 42] is shown in Fig. 2.15c. Perceptron consists of two layers
of neurons: (1) the input layer, and (2) the output layer. The input layer neurons receive external
inputs and transmit them to the output layer, while output layer is an M-P neuron which receives the
input and uses the sign function as the activation function. Given the training data, the parameters
involved in perceptron, like weights w = [w1, w2, . . . , wn]* and threshold θ , can all be effectively
learned. To simplify the learning process, here, we can add one extra dummy input feature “−1” for
the M-P neuron whose connection weight can be denoted as θ . In this way, we can unify the activating
threshold with the connection weights as w = [w1, w2, . . . , wn, θ]*. In the learning process, given a
training instance (x, y), the weights of the perceptronmodel can be updated by the following equations
until convergence:

wi = wi + ∂wi, (2.56)

∂wi = η(y − ŷ)xi, (2.57)

where η ∈ (0, 1) represents the learning rate and ŷ denotes output value of perceptron.
Perceptron is one of the simplest artificial neural network models, and can only be used to

implement some simple linear logical operations, like and, or and not, where the above learning
process will converge to the optimal variables.

• AND (x1 ∧ x2): Let w1 = w2 = 1 and θ = 1.9, we have y = f (1 · x1 + 1 · x2 − 1.9), which
achieves value y = 1 iff x1 = x2 = 1.

• OR (x1 ∨ x2): Let w1 = w2 = 1 and θ = 0.5, we have y = f (1 · x1+ 1 · x2 − 0.5), which achieves
value y = 1 if x1 = 1 or x2 = 1.

• NOT (¬x1): Let w1 = −0.6, w2 = 0 and θ = −0.5, we have y = f (−0.6 · x1 + 0 · x2 + 0.5),
which achieves value y = 1 if x1 = 0; and value y = 0 if x1 = 1.

However, as pointed out by Minsky in [30], perceptron cannot handle non-linear operations, like
xor (i.e., x1 ⊕ x2), as no convergence can be achieved with the above weight updating equations.

To overcome such a problem, multi-layer perceptron [48] has been introduced, which can classify
the instances that are not linearly separable. Besides the input and output layers, the multi-layer
perceptron also involves a hidden layer. For instance, to fit the XOR function, the multi-layer
perceptron architecture is shown in Fig. 2.15c, where the connection weights and neuron thresholds
are also clearly indicated.

• XOR (x1 ⊕ x2): Between the input layer and hidden layer, let the weights wA,C = wB,D = 1,
wA,D = wB,C = −1, thresholds θC = θD = 0.5. We can have yC = f (1 · x1 − 1 · x2 − 0.5) and
yD = f (−1 · x1 + 1 · x2 − 0.5). Between the hidden layer and output layer, let wC,E = wD,E = 1
and threshold θE = 0.5, we will have the model output y = f (1 · yC + 1 · yD − 0.5) = f (f (x1 −
x2 − 0.5) + f (−x1 + x2 − 0.5) − 0.5). If x1 = x2 = 0 or x1 = x2 = 1, we have y = 0, while if
x1 = 1, x2 = 0 or x1 = 0, x2 = 1, we have y = 1.

In addition to the multi-layer perceptron, a more general multi-layer neural network architecture is
shown in Fig. 2.15d, where multiple neuron layers are involved. Between different adjacent layers, the
neurons are connected, while those in the non-adjacent layers (i.e., the same layer or skipped layers)
are not connected. The artificial neural networks in such an architecture are named as the feed-forward
neural networks [48], which receive input from the input layer, process the input via the hidden layer,
and output the result via the output layer. For the feed-forward neural networks shown in Fig. 2.15d, it

jwzhanggy@gmail.com

60 2 Machine Learning Overview

involves one single hidden layer, which is called the single hidden-layer feed-forward neural network
in this book. Meanwhile, for the neural networks involving multiple hidden layers, they will be called
the multi-layer neural networks.

Besides perceptron, feed-forward neural network models, there also exist a large number of other
neural network models with very diverse architectures, like the cascade-correlation neural network
[13], Elman neural network [14], and Boltzmann neural network [46]. We will not introduce them
here, since they are out of the scope of this textbook. Interested readers may refer to the cited literatures
for more information about these models. Generally, for the neural networks involving hidden layers,
the model variable learning algorithm will be more challenging and different from perceptron. In the
following part, we will introduce the well-known error back propagation algorithm [43–45, 54] for
neural network model learning.

2.6.1.2 Error Back Propagation Algorithm
To this context so far, the most successful learning algorithm for multi-layer neural networks is the
Error Back Propagation (BP) algorithm [43–45, 54]. The BP algorithm has been shown to work well
for many different types of multi-layer neural network as well as the recent diverse deep neural
network models. In the following part, we will use the single hidden-layer feed-forward neural
network as an example to illustrate the BP algorithm.

As shown in Fig. 2.16, in the single-hidden layer feed-forward neural network, there exist d
different input neurons, q hidden neurons, and l output neurons. Let the data set used for training
the model be T = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Given a data instance featured by vector xi as
the input, the neural network model will generate a vector ŷi = [ŷ1i , ŷ2i , . . . , ŷli]* ∈ Rl of length l

as the output. We will use θj to denote the activating threshold of the j th output neuron, and γh to
denote the activating threshold of the hth hidden neuron. Between the input layer and hidden layer,
the connection weight between the ith input neuron and the hth hidden neuron can be represented as
vi,h. Meanwhile, between the hidden layer and the output layer, the connection weight between the
hth hidden neuron and the j th output neuron can be represented as wh,j . For the hth hidden neuron,
its received input can be represented as αh =∑d

i=1 vi,hxi , and for the j th output neuron, its received
input can be denoted as βj = ∑q

h=1wh,j bh. Here, we assume the sigmoid function is used as the
activation function, which will project the input to the output in both hidden layer and output layer.

Fig. 2.16 An example of
error back propagation
algorithm

x1 xdxi

y1 yj yl

b1 b2 bh bq

input layer

output layer

hidden layer

w1 w2 w

v1,h vi,h vd,h

θj

γh

w,j ,j h,j q,j

jwzhanggy@gmail.com

2.6 Artificial Neural Network and Deep Learning 61

Given a training data instance (xi , yi), let’s assume the output of the neural network to be ŷi =
[ŷ1i , ŷ2i , . . . , ŷli]*, and square error is used as the evaluation metric. We can represent the output ŷji
and training error as

ŷ
j
i = f (βj − θj), (2.58)

Ei =
1
2

l∑

j=1

(ŷ
j
i − y

j
i)

2, (2.59)

where 1
2 is added in the error function to remove the constant factors when computing the partial

derivatives.
BP algorithm proposes to update the model variables with the gradient descent approach. Formally,

in gradient descent approach, the model variables will be updated with multiple rounds, and the
updating equation in each round can be represented as follows:

w ← w + η · ∂w, (2.60)

where η denotes the learning rate and it is usually a small constant value. Term ∂w represents the
negative gradient of the error function regarding variable w.

We can take wh,j as an example to illustrate the learning process of the BP algorithm. Formally,
based on the given training instance (xi , yi) and the chain rule of derivatives, we can represent the
partial derivative of the introduced error regarding variable wh,j as follows:

∂wh,j = − ∂Ei

∂wh,j
= −∂Ei

∂ ŷ
j
i

· ∂ ŷ
j
i

∂βj
· ∂βj

∂wh,j
. (2.61)

Furthermore, according to the definition of Ei , βj and the property of sigmoid function (i.e.,
f ′(x) = f (x)(1 − f (x))), we have

∂Ei

∂ ŷ
j
i

= ŷ
j
i − y

j
i , (2.62)

∂ ŷ
j
i

∂βj
= ŷ

j
i (1 − ŷ

j
i), (2.63)

∂βj

∂wh,j
= bh. (2.64)

Specifically, to simplify the representations, we will introduce a new notation gj , which denotes

gj = −∂Ei

∂ ŷ
j
i

· ∂ ŷ
j
i

∂βj
= (y

j
i − ŷ

j
i) · ŷ

j
i (1 − ŷ

j
i). (2.65)

By replacing the above terms into Eq. (2.61), we have

∂ wh,j = gj · bh. (2.66)

jwzhanggy@gmail.com

62 2 Machine Learning Overview

In a similar way, we can achieve the updating equation for variable θj as follows:

θj ← θj + η · ∂θj , where ∂θj = −gj . (2.67)

Furthermore, by propagating the error back to the hidden layer, we will also be able to update the
connection weights between the input layer and hidden layer, as well as the activating threshold of the
hidden neurons. Formally, we can represent the updating equation of connection weight vi,h and γh
as follows:

vi,h = vi,h + η · ∂vi,h, where ∂vi,h = eh · xi, (2.68)

γh = γh + η · ∂γh, where ∂γh = −eh. (2.69)

In the above equations, term eh is an introduced new representation, which can be represented as
follows:

eh = −∂Ei

∂bh
· ∂bh

∂αh

= −
l∑

j=1

∂Ei

∂βj
· ∂βj

∂bh
f ′(αh − γh)

= bh(1 − bh)

l∑

j=1

wh,j · gj . (2.70)

In the updating equation, the learning rate η ∈ (0, 1) can actually be different in updating different
variables. Furthermore, according to the updating equations, the term gj calculated in updating the
weights between the hidden layer and output layer will also be used to update the weights between
input layer and hidden layer. It is also the reason why the method is called the Error Back Propagation
algorithm [43–45,54].

2.6.2 Deep Learning

In recent years, deep learning [14], as a rebranding of artificial neural networks, has become very
popular and many different types of deep learning models have been proposed already. These deep
learning models generally have a large capacity (in terms of containing information), as they are
usually in a very complex and deep structure involving a large number of variables. For this reason,
deep learning models are capable to capture very complex projections from the input data to the
objective outputs. Meanwhile, due to the availability of massive training data, powerful computational
facilities and diverse application domains, training deep learning models is becoming a feasible task,
which has dominated both academia and industry in these years.

In this part, we will introduce several popular deep learning models briefly, which include deep
autoencoder [14, 53], deep recurrent neural network (RNN) [14], and deep convolutional neural
network (CNN) [14, 26, 27]. Here, we need to indicate that the deep autoencoder model is actually
an unsupervised deep learning models, and the deep RNN and deep CNN are both supervised deep
learning models. The training of deep learning models is mostly based on the error back propagation
algorithm, and we will not cover the deep learning model learning materials in this part any more.

jwzhanggy@gmail.com

2.6 Artificial Neural Network and Deep Learning 63

2.6.2.1 Deep Autoencoder
Deep autoencoder is an unsupervised neural network model, which can learn a low-dimensional
representation of the input data via a series of non-linear mappings.Deep autoencoder model involves
two main steps: encoder and decoder. The encoder step projects the original input to the objective
low-dimensional feature space, while the decoder step recovers the latent feature representation to a
reconstruction space. In the deep autoencoder model, we generally need to ensure that the original
feature representation of data instances should be as similar to the reconstructed feature representation
as possible.

The architecture of the deep autoencoder model is shown in Fig. 2.17a. Formally, let xi represent
the original input feature representation of a data instance, y1i , y

2
i , . . . , y

o
i be the latent feature

representation of the instance at hidden layers 1, 2, . . . , o in the encoder step, and zi ∈ Rd be the
representation in the low-dimensional object space. Formally, the relationship between these vector
variables can be represented with the following equations:

y1i = σ (W1xi + b1),
yki = σ (Wkyk−1

i + bk),∀k ∈ {2, 3, . . . , o},
zi = σ (Wo+1yoi + bo+1).

(2.71)

x(1)
i

x̂(1)
i

y(1),k
i

y(1),1
i

ŷ(1),1
i

(a)

Input Layer

Hidden Layer 1

Hidden Layer 2

Hidden Layer 3

Output Layer

(b)

Input Layer
32x32

Convolution
Layer

28x28x3

Pooling
Layer

14x14x3

Convolution
Layer

10x10x12

Pooling
Layer

5x5x12

Output
Layer

10

Convolution
Layer
120

Fully
Connected

Layer
80

Convolutions Convolutions ConvolutionsSub-sampling Sub-sampling

(c)

Fig. 2.17 Examples of deep neural network models: (a) deep autoencoder model, (b) RNN model, (c) CNN model

jwzhanggy@gmail.com

64 2 Machine Learning Overview

Meanwhile, in the decoder step, the input will be the latent feature vector zi (i.e., the output of
the encoder step) instead, and the final output will be the reconstructed vector x̂i . The latent feature
vectors at each hidden layers in the decoder step can be represented as ŷoi , . . . , ŷ

2
i , ŷ

1
i . The relationship

among these vector variables can be denoted as follows:

ŷoi = σ (Ŵo+1zi + b̂o+1),

ŷk−1
i = σ (Ŵk ŷki + b̂k),∀k ∈ {2, 3, . . . , o},
x̂i = σ (Ŵ1ŷ1i + b̂1).

(2.72)

The objective of the deep autoencoder model is to minimize the loss between the original feature
vector xi and the reconstructed feature vector x̂i of all the instances in the network. Formally, the
objective function of the deep autoencoder model can be represented as

argW,Ŵ,b,b̂min
∑

i

∥∥xi − x̂i
∥∥2
2 , (2.73)

where L2 norm is used to define the loss function. In the objective function, terms W, Ŵ and b, b̂
represent the variables involved in the encoder and decoder steps in deep autoencoder, respectively.

2.6.2.2 Deep Recurrent Neural Network
Recurrent neural network (RNN) is a class of artificial neural network where connections between
units form a directed cycle. RNN has been successfully used for some special learning tasks, like
language modeling, word embedding, handwritten recognition, and speech recognition. For these
tasks, the inputs can usually be represented as an ordered sequence, and there exists a temporal
correlation between the inputs. RNN can capture such a temporal correlation effectively.

In recent years, due to the significant boost of GPUs’ computing power, the representation ability
of RNN models has been greatly improved by involving more hidden layers into a deeper architecture,
which is called the deep recurrent neural network [33]. In Fig. 2.17b, we show an example of a 3-
hidden layer deep RNN model, which receives input from the input layer, and outputs the result to
the output layer. In the deep RNN model, the states of the neurons depends on both the lower-layer
neurons and the previous neuron (in the same layer). For the deep RNN model shown in Fig. 2.17b,
given a training instance ((x1, y1), (x2, y2), . . . , (xT , yT)), we can represent the hidden states of
neurons corresponding to input xt (where t ∈ {1, 2, . . . , T }) in the three hidden layers and output
layer as vectors h1t , h

2
t , h

3
t and yt , respectively. The dynamic correlations among these variables can

be represented with the following equations formally:

h1t = fh(xt ,h1t−1; θh), (2.74)

h2t = fh(h1t ,h
2
t−1; θh), (2.75)

h3t = fh(h2t ,h
3
t−1; θh), (2.76)

ŷt = fo(h3t ; θo), (2.77)

where fh(·; θh) and fo(·; θo) denote the hidden state transition function and output function
parameterized by variables θh and θo, respectively. These functions can be defined in different ways,
depending on the unit models used in depicting the neuron states, e.g., traditional M-P neuron or the

jwzhanggy@gmail.com

2.6 Artificial Neural Network and Deep Learning 65

LSTM (i.e., long short-term memory) unit [19], GRU (i.e., gated recurrent unit) [8], and the recent
GDU (gated diffusive unit) [56].

For the provided training instance ((x1, y1), (x2, y2), . . . , (xT , yT)), the loss introduced by the
prediction result compared against the ground truth can be denoted as

J (θh, θo) =
T∑

t=1

d(ŷt , yt), (2.78)

where d(·, ·) denotes the difference between the provided variables, e.g., Euclidean distance or cross-
entropy.

Given a set of n training instances T = {((xi1, yi1), (xi2, yi2), . . . , (xiT , yiT))}ni=1, by minimizing the
training loss, we will be able to learn the variables θh and θo of the deep RNN model. The learning
process of the deep RNN models with the classic M-P neuron may usually suffer from the gradient
vanishing/exploding problem a lot. To overcome such a problem, some new unit neuron models have
been proposed, including LSTM, GRU, and GDU. More detailed descriptions about these unit models
are available in [8, 19, 56].

2.6.2.3 Deep Convolutional Neural Network
The deep convolutional neural network (CNN) model [27] is a type of feed-forward artificial neural
network, in which the connectivity pattern between the neurons is inspired by the organization of the
animal visual cortex. CNN has been shown to be effective in a lot of applications, especially in image
and computer vision related tasks. The concrete applications of CNN include image classification,
image semantic segmentation, and object detection in images. In recent years, some research works
also propose to apply CNN for the textual representation learning and classification tasks [24]. In this
part, we will use image classification problem as an example to illustrate the CNN model. As shown
in Fig. 2.17c, given an image input, the image classification task aims at determining the labels for the
image.

According to the architecture, the CNN model is formed by a stack of distinct layers that transform
the input image into the output labels. Depending on their functions, these layers can be categorized
into the input layer, convolutional layer, pooling layer, ReLU layer, fully connected layer, and output
layer, which will be introduced as follows, respectively:

• Input Layer: In the input layer, the neurons receive the image data input, and represent it as a stack
of matrices (e.g., a high-order tensor). For instance, as shown in Fig. 2.17c, for an input image of
size 32×32 by pixels, we can represent it as a 3-way tensor of dimensions 32×32×3 if the image
is represented in the RGB format.

• Convolutional Layer: In the convolutional layer, convolution kernels will applied to extract

patterns from the current image representations. For instance, if matrix K =

1 2 1
0 0 0
1 2 1

 is used

as the convolution kernel, by applying it to extract features from the images, we will be able to
identify the horizontal edges from the image, where the pixels above and below the edge differ a
lot. In Fig. 2.17c, a 5× 5 kernel is applied to the input images, which brings about a representation
of dimensions 28 × 28 × 3.

• Pooling Layer: Another important layer in the CNN model is the pooling layer, which performs
non-linear down-sampling of the feature representation from the convolution layers. There are
several different non-linear functions to implement pooling, among which max pooling and mean

jwzhanggy@gmail.com

66 2 Machine Learning Overview

pooling are the most common pooling techniques. Pooling partitions the feature representation
into a set of non-overlapping rectangles, and for each such sub-region, it outputs the maximum
number (if max-pooling is applied). The intuition of pooling is that once a feature has been found,
its exact location isn’t as important as its rough location relative to other features. Pooling greatly
reduces the size of the representation, which can reduce the amount of parameters and computation
in the model and hence also control overfitting. Pooling is usually periodically inserted in between
successive convolution layers in the CNN architecture. For instance, in Fig. 2.17c, we perform the
pooling operation on a 2×2 sub-region in the feature representation layer of dimensions 28×28×3,
which will lead to a pooling layer of dimensions 14 × 14 × 3.

• ReLU Layer: In CNN, when applying the sigmoid function as the activation function, it will suffer
from the gradient vanish problem [1, 34] a lot (just like deep RNN), which may make the gradient
based learning method (e.g., SGD) fail to work. In real-world practice, a non-linear function

f (x) =
{
0, if x < 0,

x, otherwise.
(2.79)

is usually used as the activation function instead. Neurons using such a kind of activation function
is called the Rectified Linear Unit (ReLU), and the layers involving the ReLU as the units are called
the ReLU Layer. The introduction of ReLU to replace sigmoid is an important change in CNN,
which significantly reduces the difficulty in learning CNN variables and also greatly improves its
performance.

• Fully Connected Layer: Via a series of convolution layers and pooling layers, the input image
will be transformed into a vector representation. The classification task will be performed by
a fully connected layer and an output layer, which together will compose a single-hidden layer
feed-forward neural network actually. For instance, in Fig. 2.17c, with convolution and sampling
operations, we can obtain a feature vector of dimension 120, which together with a fully connected
layer (of dimension 84) and the output layer (of dimension 10) will perform the classification task
finally.

• Output Layer: The classification result will be achieved from the output layer, which involves 10
neurons in the example in Fig. 2.17c.

2.7 EvaluationMetrics

We have introduced the classification, regression, clustering, and deep learning tasks together with
their several well-known algorithms already in the previous sections, and also talked about how to
build the modes with the available data set. By this context so far, we may have several questions in
mind: (1) how is quality of the built models, (2) how to compare the performance of different models.
To answer these two questions, we will introduce some frequently used evaluation metrics in this part
for the classification, regression, and clustering task, respectively.

2.7.1 Classification EvaluationMetrics

Here, we take the binary classification task as an example. Let y = [y1, y2, . . . , yn]* (yi ∈ {+1,−1})
be the true labels of n data instances, and ŷ = [ŷ1, ŷ2, . . . , ŷn]* (ŷi ∈ {+1,−1}) be the labels
predicted by a classification model. Based on vectors y and ŷ, we can introduce a new concept named

jwzhanggy@gmail.com

2.7 Evaluation Metrics 67

Table 2.2 Confusion
matrix

Predicted positive Predicted negative
Actual positive TP FN
Actual negative FP TN

confusion matrix, as shown in Table 2.2. In the table, depending on the true and predicted labels, the
data instances can be divided into 4 main categories as follows:

• TP (True Positive): the number of correctly classified positive instances;
• FN (False Negative): the number of incorrectly classified positive instances;
• FP (False Positive): the number of incorrectly classified negative instances;
• TN (True Negative): the number of correctly classified negative instances.

Based on the confusion matrix, we can define four different classification evaluation metrics as
follows:
Accuracy:

Accuracy = T P + TN

T P + FN + FP + TN
, (2.80)

Precision:

Precision = T P

T P + FP
, (2.81)

Recall:

Recall = T P

T P + FN
, (2.82)

Fβ -Score:

Fβ = (1+ β2) · Precision · Recall
β2 · Precision+ Recall

, (2.83)

where F1-Score (with β = 1) is normally used in practice.
Among these 4 metrics, Accuracy considers both TP and TN simultaneously in the computation,

which works well for the class balanced scenarios (i.e., the amount of positive and negative data
instances is close) but may suffer from a serious problem in evaluating the learning performance of
classification models in the class imbalanced scenario.

Example 2.6 Let’s assume we have one million patient data records. Among these patient records,
only 100 records indicate that the patient have the Alzheimer disease (AD), which is also the objective
label that we want to predict. If we treat the patient records with AD as the positive instance, and those
without AD as the negative instance, then the dataset will form a class imbalanced scenario.

Given two models with the following performance, where Model 1 is well-trained but Model 2
simply predicts all the data instance to be negative.

• Mode 1: with TP = 90, FP = 10, FN = 900, TN = 999,000;
• Model 2: with TP = 0, FP = 100, FN = 0, TN = 999,900.

jwzhanggy@gmail.com

68 2 Machine Learning Overview

By comparing the performance, Model 1 is definitely much more useful than Model 2 in practice.
However, due to the class imbalance problem, we may have different evaluation for these two models
with accuracy. According to the results, we observe that Model 1 can identify most (90%) of the AD
patients from the data but also mis-identify 900 normal people as AD patients.Model 1 can achieve an
accuracy about 90+999,000

1,000,000 = 99.909%. Meanwhile, for Model 2, by predicting all the patient records
to be negative, it cannot identify the AD patients at all. However, it can still achieve an accuracy at
999,900
1,000,000 = 99.99%, which is even larger than the accuracy of Model 1.

According to the above example, the accuracy metric will fail to work when handling the class
imbalanced data set. However, Precision, Recall, and F1 metrics can still work well in such a scenario.
We will leave the computation of Precision, Recall, and F1 for this example as an exercise for the
readers.

Besides these four metrics, two other curve based evaluation metrics can also be defined based on
the confusion matrix, which are called the Precision-Recall curve and ROC curve (receiver operating
characteristic curve). Given the n data instances together with their true and predicted labels, we can
obtain a (precision, recall) pair at each of the data instances xi based on the cumulative prediction
results from the beginning to the current position. The Precision-Recall curve is a plot obtained based
on such (precision, recall) pairs. Meanwhile, as to the ROC curve, it is introduced based on two
new concepts named true positive rate (TPR) and false positive rate (FPR):

T PR = T P

T P + FN
, (2.84)

FPR = FP

TN + FP
. (2.85)

Based on the predicted and true labels of these n data instances, a series of (T PR,FPR) pairs can
be calculated, which will plot the ROC curve. In practice, a larger area under the curves generally
indicates a better performance of the models. Formally, the area under the ROC curve is defined as the
ROC AUC metric (AUC is short for area under curve), and the area under the Precision-Recall curve
is called the PR AUC.

2.7.2 Regression EvaluationMetrics

For the regression tasks, the predicted and true labels are actually real values, instead of pre-defined
class labels in classification tasks. For the regression tasks, given the predicted and true label vectors
ŷ and y of data instances, some frequently used evaluation metrics include

Explained Variance Regression Score

EV (y, ŷ) = 1 − V ar(y − ŷ)
V ar(y)

, (2.86)

where V ar(·) denotes the variance of the vector elements.

jwzhanggy@gmail.com

2.7 Evaluation Metrics 69

Mean Absolute Error

MAE(y, ŷ) = 1
n

n∑

i=1

|yi − ŷi |. (2.87)

Mean Square Error

MSE(y, ŷ) = 1
n

n∑

i=1

(yi − ŷi)
2. (2.88)

Median Absolute Error

MedAE(y, ŷ) = median(|y1 − ŷ1|, |y2 − ŷ2|, . . . , |yn − ŷn|). (2.89)

R2 Score

R2(y, ŷ) = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

, (2.90)

where ȳ = 1
n

∑n
i=1 yi .

2.7.3 Clustering EvaluationMetrics

For the clustering tasks, the output results are actually not real classes but just identifier of clusters.
Given a data set D = {xi}ni=1 involving n data instances, we can denote the ground truth clusters and
inferred clustering result as C = {C1, . . . , Ck} and Ĉ = {Ĉ1, . . . , Ĉk}, respectively. Furthermore, for all
the data instances in D, we can represent their inferred cluster labels and the real cluster labels as ŷ
and y, respectively. For any pair of data instances xi , xj ∈ D, based on the predicted and true cluster
labels, we can divide the instance pairs into four categories (S: Same; D: Different):

SS: Set SS = {(xi , xj)|yi = yj , ŷi = ŷj , i)= j}, and we denote |SS| = a.
SD: Set SD = {(xi , xj)|yi = yj , ŷi)= ŷj , i)= j}, and we denote |SD| = b.
DS: Set DS = {(xi , xj)|yi)= yj , ŷi = ŷj , i)= j}, and we denote |DS| = c.
DD: Set DD = {(xi , xj)|yi)= yj , ŷi)= ŷj , i)= j}, and we denote |DD| = d.

Here, set SS contains the data instance pairs that are in the same cluster in both the prediction results
and the ground truth; set SD contains the data instance pairs that are in the same cluster in the ground
truth but in different clusters in the prediction result; set DS contains the data instance pairs that are
in different clusters in the ground truth but in the same cluster in the prediction result; and set DD

contains the data instance pairs that are in different clusters in both the prediction results and the
ground truth. We have these set sizes sum up to be a + b + c + d = n(n − 1).

Based on these notations, metrics like Jaccard’s Coefficient, FM Index (Fowlkes and Mallows
Index), and Rand Index can be defined

jwzhanggy@gmail.com

70 2 Machine Learning Overview

Jaccard’s Coefficient

JC(y, ŷ) = a

a + b + c
. (2.91)

FM Index

FMI (y, ŷ) =
√

a

a + b
· a

a + c
. (2.92)

Rand Index

RI (y, ŷ) = 2(a + d)

a + b + c + d
= 2(a + d)

n(n − 1)
. (2.93)

These above evaluation metrics can be used in the case where the clustering ground truth is
available, i.e., C or y is known. In the case that no cluster ground truth can be obtained for the data
instances, we will introduce another set of evaluation metrics based on the distance measures among
the data instances. Formally, given a clustering result C = {C1, . . . , Ck}, we introduce the following 4
concepts based on the instance distance measures

• Average Distance:

dist(Ci) =
2

|Ci |(|Ci | − 1)

∑

j,l∈{1,2,...,|Ci |},j<l

dist(xj , xl), (2.94)

• Diameter:

diam(Ci) = max
j,l∈{1,2,...,|Ci |},j<l

dist(xj , xl), (2.95)

• Inter-Cluster Distance:

dmin(Ci , Cj) = min
xi∈Ci ,xj∈Cj

dist(xi , xj), (2.96)

• Inter-Cluster Center Distance:

dcen(Ci , Cj) = dist(µi ,µj). (2.97)

Here µi and µj denote the centers of clusters Ci and Cj , respectively. Based on these concepts, we
will introduce two distance based clustering evaluation metrics: DB Index (Davies-Bouldin Index),
and Dunn Index, which are frequently used in evaluating the clustering results quality.

DB Index

DBI = 1
k

k∑

i=1

max
j)=i

(
dist(Ci)+ dist(Cj)

dcen(Ci , Cj)

)
, (2.98)

jwzhanggy@gmail.com

2.8 Summary 71

Dunn Index

DI = min
i∈{1,2,...,k}

{
min
j)=i

(
dmin(Ci , Cj)

maxl∈{1,2,...,k}diam(Cl)

)}
. (2.99)

Besides these metrics introduced in this section, there also exist a large number of evaluation
metrics proposed for different application scenarios, which will not be introduced here since they
are out of the scope of this book. We may introduce some of them in the following chapters when
talking about the specific social network fusion or knowledge discovery problems.

2.8 Summary

In this chapter, we provided an overview of data operations and machine learning tasks, which aims
at endowing computers with the ability to “learn” and “adapt.” In machine learning, experiences are
usually represented as data, and the main objective of machine learning is to derive “models” from
data that can capture the complicated hidden patterns. These new models can be fed to the new data,
which can provide us with the inference results matching the captured patterns.

We have also introduced the basic knowledge about data, including the data attributes and data
types. The data attributes can be categorized into various types, including numerical and categorical.
Record data, graph data, and ordered data together will form the three main data types, that
will be studied in this book. We have also talked about the data characteristics, including quality,
dimensionality, and sparsity. Several basic data processing operations, e.g., data cleaning and pre-
processing, data aggregating and sampling, data dimensionality reduction and feature selection as
well as data transformation, have been introduced in this chapter as well.

We divided the supervised learning tasks into classification tasks and regression tasks, respectively.
For the classification part, we have introduced its problem setting, training/testing set splitting
approach, and two well-known models, i.e., decision tree and SVM. Meanwhile, for the regression
part, we provide the description for the problem setting and three regression models in the linear
form, i.e., linear regression, Lasso, and Ridge. We mainly focused on clustering when introducing
the unsupervised learning tasks in this chapter. Three clustering algorithms were introduced in this
chapter, including two hard clustering approaches: K-Means and DBSCAN, and one soft clustering
approach: Mixture-of-Gaussian.

We also provided an introduction to the neural network research works and the recent deep
learning models in this chapter. Starting from the classic M-P neuron model to perceptron, multi-layer
perceptron model, and the multi-layer feed-forward neural network model, we provided an overview
about the neural network development history. To train the models, we covered the well-known error
back-propagation algorithm by taking the single hidden-layer feed-forward neural network model
as an example. The latest development of deep learning models is also introduced in this chapter,
including deep autoencoder, deep RNN, and deep CNN models, respectively.

This chapter was concluded with the descriptions of several evaluation metrics for measuring the
performance of classification, regression, and clustering models, respectively.

jwzhanggy@gmail.com

72 2 Machine Learning Overview

2.9 Bibliography Notes

The data mining textbook [49] provides a comprehensive introduction about data types, data
characteristics, and data processing operations. The readers may refer to the textbook, especially the
chapters regarding the data introduction part, for more information regarding certain topics that you
are interested in.

For the decision tree, the most famous representative models include ID3 [37], C4.5 [38], and
CART [5], and the readers may check these three papers as a guidance when reading the decision tree
section. In selecting the optimal attributes to construct the decision tree internal nodes, information
gain, information gain ratio, and Gini index [39,47] are usually the most frequently used metrics. The
tree branch pruning strategies mentioned in this chapter have a detailed introduction in [38], and the
interested readers may check that article for more information.

SVM initially published in [9] has dominated the machine learning research area for a long time,
which also serves as the foundation of statistical learning later on. SVM can achieve an outstanding
performance on textual classification task [22]. Assisted with the kernel trick, SVM can be applied
to handle the non-linearly separable data instances. Meanwhile, the selection of the kernels is still an
open problem by this context so far.

The K-Means algorithm introduced in this chapter actually has so many different variants, like K-
Medoids [23] which uses data instances as the prototypes and K-Modes [21] that can handle discrete
attributes. To detect soft clustering results, K-Means can be extended to the Fuzzy C-Means [4], where
each data instance can belong to multiple clusters. Some methods have been proposed for selecting
the optimal cluster number K [35]. However, in the real practice, parameter K is normally selected
by trying multiple different values and selecting the best one from them.

Neural network is a black-box model, whose learning performance is extremely challenging to
explain. If the readers are interested in neural networks, you are suggested to read the textbook [18],
which provides a systematic introduction about neural network models. Meanwhile, in recent years,
due to the surge of deep learning, the latest deep learning book [14] has also become very popular
among researchers. BP was initially proposed by Werbos in [54] and later re-introduced by Rumelhart
in [43–45]. By this context so far, the BP algorithm is still used as the main learning algorithm for
training neural network models.

2.10 Exercises

1. (Easy) According to the attribute type categorization provided in Fig. 2.2, please indicate the types
of attributes used in Table 2.1.

2. (Easy) What’s the “curse of dimensionality”? Please briefly explain the concept and indicate the
potential problems caused by large data dimensionality, as well as the existing methods introduced
to resolve such a problem.

3. (Easy) Please compute the Precision, Recall, and F1 for both Model 1 and Model 2 in
Example 2.6, whose performance statistics are provided as follows:
• Mode 1: with TP = 90, FP = 10, FN = 900, TN = 999,000;
• Model 2: with TP = 0, FP = 100, FN = 0, TN = 999,900.

4. (Easy) Compare the pre-pruning and post-pruning strategies used in decision tree mode training,
and indicate their advantages and disadvantages.

5. (Medium) Please briefly summarize the kernel trick used in SVM, and explain why kernel trick is
helpful for training SVM.

jwzhanggy@gmail.com

References 73

6. (Medium) Please compare the L1-norm and L2-norm used in Lasso and Ridge, respectively.
Since they both can regularize the model variables, please try to provide their advantages and
disadvantages.

7. (Medium) Please explain why the single hidden-layer feed-forward neural network model
provided in Fig. 2.15c can address the XOR problem.

8. (Hard) Based on the technique introduced in Sect. 2.3.2.2, please try to construct a decision tree
for the data records provided in Table 2.1.

9. (Hard) Please prove that there exists the closed form solution to the Ridge regression model, i.e.,
matrix (X*X+ αI) in Eq. (2.39) is invertible.

10. (Hard) Please try to prove that Eq. (2.23) introduced in Sect. 2.3.3.2 holds, i.e., “Maxmin no
greater than Minmax.”

max
α

min
w,b

L(w, b,α) ≤ min
w,b

max
α

L(w, b,α). (2.100)

References

1. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Trans.
Neural Netw. 5(2), 157–166 (1994)

2. T. Bengtsson, P. Bickel, B. Li, Curse-of-dimensionality revisited: collapse of the particle filter in very large scale
systems, in Probability and Statistics: Essays in Honor of David A. Freedman, vol. 2 (2008), pp. 316–334

3. S. Berchtold, C. Bohm, H. Kriegel, The pyramid-technique: towards breaking the curse of dimensionality, in
Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data (SIGMOD ’02), vol.
27, pp. 142–153 (1998)

4. J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Kluwer Academic Publishers, Norwell,
1981)

5. L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression Trees (Wadsworth and Brooks,
Monterey, 1984)

6. C. Brodley, P. Utgoff, Multivariate decision trees. Mach. Learn. 19(1), 45–77 (1995)
7. O. Chapelle, B. Schlkopf, A. Zien, Semi-supervised Learning, 1st edn. (MIT Press, Cambridge, 2010)
8. J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence

modeling. CoRR, abs/1412.3555 (2014)
9. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

10. J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization. J.
Mach. Learn. Res. 12, 2121–2159 (2011)

11. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression. Ann. Stat. 32, 407–499 (2004)
12. M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters a density-based algorithm

for discovering clusters in large spatial databases with noise, in Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining (AAAI Press, Menlo Park, 1996)

13. S. Fahlman, C. Lebiere, The cascade-correlation learning architecture, in Advances in Neural Information
Processing Systems 2 (Morgan-Kaufmann, Burlington, 1990)

14. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016). http://www.
deeplearningbook.org

15. I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–11182 (2003)
16. J. Hartigan, M. Wong, A k-means clustering algorithm. JSTOR Appl. Stat. 28(1), 100–108 (1979)
17. D. Hawkins, The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12 (2004)
18. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edn. (Prentice Hall PTR, Upper Saddle River,

1998)
19. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
20. A. Hoerl, R. Kennard, Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42(1), 80–

86 (2000)
21. Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min.

Knowl. Discov. 2(3), 283–304 (1998)

jwzhanggy@gmail.com

http://www.deeplearningbook.org
http://www.deeplearningbook.org

74 2 Machine Learning Overview

22. T. Joachims, Text categorization with support vector machines: learning with many relevant features, in European
Conference on Machine Learning (Springer, Berlin, 1998)

23. L. Kaufmann, P. Rousseeuw, Clustering by Means of Medoids (North Holland/Elsevier, Amsterdam, 1987)
24. Y. Kim, Convolutional neural networks for sentence classification, in Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP) (Association for Computational Linguistics, Doha,
2014)

25. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in International
Joint Conference on Artificial Intelligence (IJCA) (Morgan Kaufmann Publishers Inc., San Francisco, 1995)

26. A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in
Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12) (Curran
Associates Inc., Red Hook, 2012)

27. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in
Proceedings of the IEEE (IEEE, Piscataway, 1998)

28. J. Liu, S. Ji, J. Ye, SLEP: sparse learning with efficient projections. Technical report (2010)
29. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4),

115–133 (1943)
30. M. Minsky, S. Papert, Perceptrons: Expanded Edition (MIT Press, Cambridge, 1988)
31. S. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
32. N. Parikh, S. Boyd, Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2014)
33. R. Pascanu, C. Gulcehre, K. Cho, Y. Bengio, How to construct deep recurrent neural networks. CoRR,

abs/1312.6026 (2013)
34. R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, in Proceedings of the

30th International Conference on International Conference on Machine Learning (ICML’13) (2013)
35. D. Pelleg, A. Moore, X-means: extending k-means with efficient estimation of the number of clusters, in

Proceedings of the 17th International Conference on Machine Learning, Stanford (2000)
36. J. Platt, Sequential minimal optimization: a fast algorithm for training support vector machines. Technical report.

Adv. Kernel Methods Support Vector Learning 208 (1998)
37. J. Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
38. J. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers Inc., San Francisco, 1993)
39. L. Raileanu, K. Stoffel. Theoretical comparison between the Gini index and information gain criteria. Ann. Math.

Artif. Intell. 41(1), 77–93 (2004)
40. C. Rasmussen, The infinite Gaussian mixture model, in Advances in Neural Information Processing Systems 12

(MIT Press, Cambridge, 2000)
41. J. Rawlings, S. Pantula, D. Dickey, Applied Regression Analysis, 2nd edn. (Springer, Berlin, 1998)
42. F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol.

Rev. 65, 386 (1958)
43. D. Rumelhart, G. Hinton, R. Williams, Learning internal representations by error propagation, in Parallel

Distributed Processing: Explorations in the Microstructure of Cognition (MIT Press, Cambridge, 1986)
44. D. Rumelhart, G. Hinton, R. Williams, Learning representations by back-propagating errors, in Neurocomputing:

Foundations of Research (MIT Press, Cambridge, 1988)
45. D. Rumelhart, R. Durbin, R. Golden, Y. Chauvin, Backpropagation: the basic theory, in Developments in

Connectionist Theory. Backpropagation: Theory, Architectures, and Applications (Lawrence Erlbaum Associates,
Inc., Hillsdale, 1995)

46. R. Salakhutdinov, G. Hinton, Deep Boltzmann machines, in Proceedings of the Twelfth International Conference
on Artificial Intelligence and Statistics (2009)

47. C. Shannon, A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55
(2001)

48. D. Svozil, V. Kvasnicka, J. Pospichal, Introduction to multi-layer feed-forward neural networks. Chemom. Intell.
Lab. Syst. 39(1), 43–62 (1997)

49. P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining (First Edition) (Addison-Wesley Longman Publishing
Co., Inc., Boston, 2005)

50. R. Tibshirani, The lasso method for variable selection in the cox model. Stat. Med. 16, 385–395 (1997)
51. L. Van Der Maaten, E. Postma, J. Van den Herik, Dimensionality reduction: a comparative review. J. Mach. Learn.

Res. 10, 66–71 (2009)
52. M. Verleysen, D. François, The curse of dimensionality in data mining and time series prediction, in Computational

Intelligence and Bioinspired Systems. International Work-Conference on Artificial Neural Networks (Springer,
Berlin, 2005)

53. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P. Manzagol, Stacked denoising autoencoders: learning useful
representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

jwzhanggy@gmail.com

References 75

54. P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis,
Harvard University, Cambridge, 1974

55. X. Yan, X. Su, Linear Regression Analysis: Theory and Computing (World Scientific Publishing Co., Inc., River
Edge, 2009)

56. J. Zhang, L. Cui, Y. Fu, F. Gouza, Fake news detection with deep diffusive network model. CoRR, abs/1805.08751
(2018)

57. X. Zhu, Semi-supervised learning literature survey. Comput. Sci. 2(3), 4 (2006)

jwzhanggy@gmail.com

