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11.1 Overview

In the era of big data, information from diverse disciplines is generated at an extremely fast pace,
lots of which are highly structured and can be represented as massive and complex networks. The
representative examples include online social networks, like Facebook and Twitter, academic retrieval
sites, like DBLP and Google Scholar, as well as bio-medical data, e.g., human brain networks. These
networks/graphs are usually very challenging to handle due to their extremely large-scale (involving
millions even billions of nodes), complex structures (containing heterogeneous links) as well as the
diverse attributes (attached to the nodes or links). For instance, the Facebook social network involves
more than 1 billion active users; DBLP contains about 2.8 billions of papers; and human brain has
more than 16 billion neurons.

Great challenges exist when handling these network-representation data with traditional machine
learning algorithms, which usually take feature vector representation data as the input. A general
representation of heterogeneous networks as feature vectors is desired for knowledge discovery from
such complex network structured data. In recent years, many research works propose to embed the
online social network data into a lower-dimensional feature space [4, 17, 22], in which the user node
is represented as a unique feature vector, and the network structure can be reconstructed from these
feature vectors. With the embedded feature vectors, classic machine learning models can be applied
to deal with the social network data directly, and the storage space can be saved greatly.

In this chapter, we will talk about the network embedding problem [17], aiming at projecting the
nodes and links in the network data in low-dimensional feature spaces. Depending on the application
settings, existing graph embedding works can be categorized into the embedding of multi-relational
networks [1, 8, 16], homogeneous networks [6, 11, 14], heterogeneous networks [2, 3, 7], and multiple
aligned heterogeneous networks [21]. Meanwhile, depending on the models being applied, the current
embedding works can be divided into the translation based embedding [1, 8, 16], random walk based
embedding [6, 11], proximity based embedding [14], and deep learning based embedding [21].

In the following parts in this chapter, we will first introduce the translation based graph
embedding models in Sect. 11.2, which are mainly proposed for the multi-relational knowledge
graphs, including TransE [1], TransH [16], and TransR [8]. After that, in Sect. 11.3, we will introduce
three homogeneous network embedding models, including DeepWalk [11], LINE [14], and node2vec
[6]. Three embedding models, HNE [2], PANE [3], and HEBE [7], for the heterogeneous networks
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386 11 Network Embedding

will be introduced in Sect. 11.4, which project the nodes to feature vectors based on the heterogeneous
information inside the networks. Finally, we will talk about the model proposed for embedding the
multiple aligned heterogeneous network in Sect. 11.5, where the anchor links are utilized to transfer
information across different sites for mutual refinement of the embedding results synergistically.

11.2 Relation Translation Based Graph Entity Embedding

Multi-relational data refers to the graph structured data whose nodes correspond to entities and links
denote the relationships. The multi-relational data can be represented as a graphG = (V, E), where V
denotes the node set and E represents the link set. For the link in the graph, e.g., r = (h, t) ∈ E , we can
represent the corresponding entity-relation as a triple (h, r, t), where h denotes the link initiator entity,
t denotes the link recipient entity, and r represents the link. The embedding problem studied in this
section is to learn a feature representation of both entities and relations in the triples, i.e., h, r , and t .

Model TransE [1] is the initial translation based embedding work, which projects the entity
and relation into a common feature space. TransH [16] improves TransE by considering the link
cardinality constraint in the embedding process, and can achieve a comparable time complexity. In
the real-world multi-relational networks, the entities can have multiple aspects, and the different
relations can express different aspects of the entity. Model TransR [8] proposes to build the entity
and relation embeddings in separate entity and relation spaces instead. Next, we will introduce the
embedding models TransE, TransH, and TransR one by one as follows, where the relation is more
like a translation of entities in the embedding space. It is the reason why these models are called the
translation based embedding models.

11.2.1 TransE

The TransE [1] model is an energy-based model for learning low-dimensional embeddings of entities
and relations, where the relations are represented as the translations of entities in the embedding
space. Given an entity-relation triple (h, r, t), as shown in Fig. 11.1, we can represent the embedding
feature representations of the entities and relations as vectors h ∈ Rk , r ∈ Rk , and t ∈ Rk , respectively
(k denotes the objective vector dimension). If the triple (h, r, t) holds, i.e., there exists a link r starting
from h to t in the network, the corresponding embedding vector h + r should be as close to vector t
as possible.

Fig. 11.1 An example of
TransE

h
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r
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11.2 Relation Translation Based Graph Entity Embedding 387

Let S+ = {(h, r, t)}r=(h,t)∈E represent the set of positive training data, which contains the triples
existing in the networks. The TransE model aims at learning the embedding feature vectors of the
entities h, t and the relation r , i.e., h, r, and t. For the triples in the positive training set, we want to
ensure that the learnt embedding vectors h+ r are very close to t. Let d(h+ r, t) denote the distance
between vectors h + r and t. The loss introduced for the triples in the positive training set can be
represented as

L(S+) =
∑

(h,r,t)∈S+
d(h+ r, t). (11.1)

Here, the distance function can be defined in different ways, like the L2 norm of the difference
between vectors h+ r and t, i.e.,

d(h+ r, t) = ‖h+ r − t‖2 . (11.2)

By minimizing the above loss function, the optimal feature representations of the entities and
relations can be learnt. To avoid trivial solutions, like the zero vector 0 for h, r, and t, additional
constraints, e.g., the L2-norm of the embedding vectors of the entities should be 1, can be added in
the function. Furthermore, a negative training set is also sampled to differentiate the learnt embedding
vectors. For a triple (h, r, t) ∈ S+, we can denote the corresponding sampled negative training set as
S−
(h,r,t), which contains the triples formed by replacing the initiator entity h or the recipient entity t

with the random entities. In other words, we can represent the negative training set S−
(h,r,t) as

S−
(h,r,t) = {(h′, r, t)|h′ ∈ V} ∪ {(h, r, t ′)|t ′ ∈ V}. (11.3)

The loss function involving both the positive and negative training set can be represented as

L(S+,S−) =
∑

(h,r,t)∈S+

∑

(h′,r,t ′)∈S−
(h,r,t)

max
(
γ + d(h+ r, t) − d(h′ + r, t′), 0

)
, (11.4)

where γ is a margin hyperparameter and max(·, 0) will count the positive loss values only.
The optimization is carried out by stochastic gradient descent (in minibatch mode). The embedding

vectors of entities and relationships are initialized with a random procedure. At each iteration of the
algorithm, the embedding vectors of the entities are normalized and a small set of triplets is sampled
from the training set, which will serve as the training triplets of the minibatch. The parameters are
then updated by taking a gradient step with a constant learning rate.

11.2.2 TransH

TransE is a promising method proposed recently, which is very efficient while achieving state-of-
the-art predictive performance. However, in the embedding process, TransE fails to consider the
cardinality constraint on the relations, like one-to-one, one-to-many, and many-to-many. The TransH
[16] model to be introduced in this part considers such properties on relations in the embedding
process. Furthermore, different from the other complex models, which can handle these properties
but sacrifice efficiency, TransH achieves comparable time complexity as TransE. TransH models the
relation as a hyperplane together with a translation operation on it, where the correlation among the
entities can be effectively preserved.

jwzhanggy@gmail.com



388 11 Network Embedding

Fig. 11.2 An example of
TransH

h

t
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In TransH, different from the embedding space of entities, the relations, e.g., r , is denoted as
a transition vector dr in the hyperplane wr (a normal vector). For each of the triple (h, r, t), as
illustrated in Fig. 11.2, the embedding vectors h, t are first projected to the hyperplane wr , whose
corresponding projected vectors can be represented as h⊥ and t⊥, respectively. The vectors h⊥ and
t⊥ can be connected by the translation vector dr on the hyperplane. Depending on whether the triple
appears in the positive or negative training set, the distance d(h⊥+dr , t⊥) should be either minimized
or maximized.

Formally, given the hyperplane wr , we can represent the projection vectors h⊥ and t⊥ as

h⊥ = h − w'
r hwr , (11.5)

t⊥ = t − w'
r twr . (11.6)

Furthermore, the L2 norm based distance function can be represented as

d(h⊥ + dr , t⊥) = ‖h⊥ + dr − t⊥‖22
= ‖(h − wrhwr )+ dr − (t − wr twr )‖22 . (11.7)

The variables to be learnt in the TransH model include the embedding vectors of all the entities, the
hyperplane, and translation vectors for each of the relations. To learn these variables simultaneously,
the objective function of TransH can be represented as

L(S+,S−)

=
∑

(h,r,t)∈S+

∑

(h′,r ′,t ′)∈S−
(h,r,t)

max
(
γ + d(h⊥ + dr , t⊥) − d(h′

⊥ + d′
r , t

′
⊥), 0

)
, (11.8)

where S−
(h,r,t) denotes the negative set constructed for triple (h, r, t). Different from TransE, TransH

applies a different approach to sample the negative training triples with considerations of the relation
cardinality constraint. For the relations with one-to-many, TransH will give more chance to replace
the initiator node; and for the many-to-one relations, TransH will give more chance to replace the
recipient node instead.
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11.2 Relation Translation Based Graph Entity Embedding 389

Besides the loss function, the variables to be learnt are subject to some constraints, like the
embedding vectors for entities are normal vectors, wr and dr should be orthogonal, and wr is also
a normal vector. We summarize the constraints of the TransH model as follows:

‖h‖2 ≤ 1, ‖t‖2 ≤ 1,∀h, t ∈ V, (11.9)

|w'
r dr |

‖dr‖2
≤ ε,∀r ∈ E, (11.10)

‖wr‖2 = 1,∀r ∈ E, (11.11)

where the second constraint guarantees that the translation vector dr is in the hyperplane. The
constraints can be relaxed as some penalty terms, which can be added to the objective function with a
relatively large penalty weight. The final objective function can be learnt with the stochastic gradient
descent, and by minimizing the loss function, we can learn the variables and get the final embedding
results.

11.2.3 TransR

Both TransE and TransH introduced in the previous subsections assume embeddings of entities and
relations to be within the same space Rk . However, entities and relations are actually totally different
objects, and they may be not capable to be represented in a common semantic space. To address such
a problem, TransR [8] is proposed, which models the entities and relations in distinct spaces, i.e., the
entity space and relation space, and performs the translation between the relation spaces.

As shown in Fig. 11.3, in TransR, given a triple (h, r, t), the entities h and t are embedded as
vectors h, t ∈ Rke , and the relation r is embedded as vector r ∈ Rkr , where the dimension of the
entity space and relation space is not the same, i.e., ke *= kr . To project the entities from the entity
space to the relation space, a projection matrixMr ∈ Rke×kr is defined in TransR. With the projection
matrix, we can define the projected entity embedding vectors as

hr = Mrh, (11.12)

tr = Mr t. (11.13)

Fig. 11.3 An example of
TransR Mr
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r
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The loss function is defined as

d(hr + r, tr ) = ‖hr + r − tr‖22
= ‖Mrh+ r − Mr t‖22 . (11.14)

The constraints involved in TransR include

‖h‖2 = 1, ‖t‖2 = 1,∀h, t ∈ V, (11.15)

‖Mrh‖2 = 1, ‖Mr t‖2 = 1,∀h, t ∈ V, (11.16)

‖wr‖2 ≤ 1,∀r ∈ E . (11.17)

The negative training set S− in TransR can be obtained in a similar way as TransH, where the
variables can be learnt with the stochastic gradient descent. We will not introduce the information
here to avoid content duplication.

11.3 Homogeneous Network Embedding

Besides these introduced translation based network embedding models, in this section, we will
introduce three other recent embedding models proposed for homogeneous network data, including
DeepWalk [11], LINE [14], and node2vec [6]. Formally, the networks studied in this part are all
homogeneous networks, which is represented as G = (V, E). V denotes the set of nodes in the
network, and E represents the set of links among the nodes inside the network.

11.3.1 DeepWalk

The DeepWalk [11] algorithm consists of two main components: (1) a random walk generator, and
(2) random walk based node representation learning. In the first step, the DeepWalk model randomly
selects a node, e.g., u ∈ V , as the starting node of a random walk Wu in the network. Random walk
Wu will sample the neighbors of the node last visited uniformly until the maximum length l is met. In
the second step, the sampled neighbors are used to update the representations of the nodes inside the
graph, where Skip-Gram is applied here.

The pseudo-code of the DeepWalk algorithm is available in Algorithm 1, which illustrates the
general procedure of the algorithm. In the algorithm, line 1 initializes the representation matrix X
for all the nodes, and line 2 builds a binary tree involving all the nodes in the network as the leaves,
which will be introduced in more detail in Sect. 11.3.1.3. Lines 3–9 denote the main part of the
DeepWalk algorithm, where the random walk starting randomly at each node is generated for γ times
by calling the functionWalkGenerator. For each node u, a random walkWu is generated whose length
is bounded by parameter l. The random walk will be applied to update the node representation with
the Skip-Gram function to be introduced in Sect. 11.3.1.2.

11.3.1.1 RandomWalk Generator
The random walk model has been introduced in Sect. 3.3.3.3. Formally, we can represent the random
walk starting at node u ∈ V as Wu, which actually denotes a stochastic process with random status
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11.3 Homogeneous Network Embedding 391

Algorithm 1 DeepWalk
Require: Input homogeneous network G = (V, E)

Window size s; Embedding size d
Walk length l; Walks per node γ

Ensure: Matrix of node representations X ∈ R|V|×d

1: Initialize X with random values following the uniform distribution
2: Build a binary tree T from node set V
3: for Round i = 1 to γ do
4: O = shuffle(V)
5: for Node u ∈ O do
6: Wu = WalkGenerator(G, u, l)
7: SkipGram(X, Wu, w)
8: end for
9: end for
10: Return X

W 0
u , W

1
u , . . ., W

k
u . Formally, at the very beginning, i.e., in step 0, the random walk is at the initial

node, i.e.,W 0
u = u. The status variable Wk

u denotes the node where the walker is at the step k.
Random walk can capture the local network structures effectively, where the neighborhood and

social connection closeness can affect the next nodes that the random walk will move to in the
following steps. Therefore, in the DeepWalk algorithm, random walk is applied to sample a stream
of short random walks as the tool for extracting information from a network. Random walk can
provide two very desirable properties, besides the ability to capture the local network structures.
Firstly, the random walk based local network exploration is easy to parallelize. Several random
walks can simultaneously explore different parts of the same network in different threads, processes,
and machines. Secondly, with the information obtained from short random walks, it is possible to
accommodate small changes in the network structure without the need for global recomputation.

11.3.1.2 Skip-Gram Technique
The node representation learning step involved in the DeepWalk algorithm is very similar to the word
appearance prediction in language modeling. In this part, we will first provide some basic knowledge
about the language modeling problem first, and then introduce the Skip-Gram technique.

Formally, the objective of language modeling is to estimate the likelihood of a specific sequence
of words appearing in a corpus. More specifically, given a sequence of words (w1, w2, . . . , wn−1)

where word wi ∈ V (V denotes the vocabulary set), the word appearance prediction problem aims at
inferring the word wn that will appear next. An intuitive idea to model the problem is to maximize the
estimation likelihood for the next word wn given w1, w2, . . . , wn−1, and the problem can be formally
represented as

w∗
n = argwn∈V P(wn|w1, w2, . . . , wn−1), (11.18)

where term P(wn|w1, w2, . . . , wn−1) denotes the conditional probability of havingwn attached to the
observed word sequence w1, w2, . . . , wn−1.

Meanwhile, in neural networks, the words will have a latent representation denoted as a vector,
like xwi ∈ Rd for word wi ∈ V . Furthermore, computation of the above conditional probability is
very challenging, especially as the observed word sequence gets longer, i.e., n is large. Therefore, a
window is proposed to limit the length of word sequence in probability computation. We can denote
s as the size of the window. Therefore, we can rewrite the above objective function as

w∗
n = argwn∈V P(wn|xwn−s , xwn−s+1 , . . . , xwn−1). (11.19)
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392 11 Network Embedding

A recent relaxation to the above problem in language modeling turns the prediction problem on its
head. Three big changes are applied to the model: (1) instead of predicting the objective word with
the context, the relaxation predicts the context based on the objective word; (2) the context denotes
the words appearing before and after the objective word limited by the window size s; and (3) the
order of words is removed and the context denotes a set of words instead. Formally, we can rewrite
the objective function as

w∗
n = argwn∈V P({wn−s , wn−s+1, . . . , wn+s} \ {wn}|xwn). (11.20)

Skip-Gram is a language model that maximizes the co-occurrence probability of words appearing
in the time window s in a sentence. Here, when applying the Skip-Gram technique in the DeepWalk
model, we can treat the nodes u ∈ V in the network as the words w denoted in the aforementioned
equations. Meanwhile, for the nodes sampled by the random walk model within the window size
s before and after node v, they will be treated as the context nodes appearing ahead of and after
node v. Furthermore, Skip-Gram assumes the appearance of the words (or nodes for networks) to be
independent, and we can rewrite the above probability equations as follows:

P({un−s , un−s+1, . . . , un+s} \ {un}|xun) =
n+s∏

i=n−s,i *=n

P (ui |xun), (11.21)

where un−s , un−s+1, . . . , un+s denotes the sequence of nodes sampled by the random walk model.
The learning process of the Skip-Gram algorithm is provided in Algorithm 2, where we enumerate

all the co-locations of nodes in the sampled node sequence un−s , un−s+1, . . . , un+s by a random walk
Wu (starting from node u in the network). With the gradient descent based algorithm, we can update
the representations of nodes according to their neighbor representations with the stochastic gradient
descent learning algorithm. The derivatives are estimated with the back-propagation algorithm.
However, in the equation, we need to have the conditional probabilities of the nodes and their
representations. A concrete representation of the probability can be a great challenging problem. As
proposed in [11], such a distribution can be learnt with some existing models, like logistic regression.
However, since the labels used here involve all the nodes in the network, it will lead to a very large
label space with |V| different labels, which renders the learning process extremely time-consuming
and ineffective. To solve such a problem, some techniques, like hierarchical softmax [10], have
been proposed, which represents the nodes in the network as a binary tree and can lower down the
probability computation time complexity effectively from O(|V|) to O(log |V|).

Algorithm 2 Skip-Gram
Require: Representations of nodes: X

Random walk starting from node u: Wu

Window size s
Ensure: Updated matrix of node representations X
1: for Each node ui ∈ Wu do
2: Wu will generate a sampled sequence before and after uj bounded by window size s: (ui−s , . . . , ui+s )
3: for Each node uj ∈ (ui−s , . . . , ui+s ) do
4: J (X) = − logP(uj |xui )
5: X = X − α J (X)

∂X
6: end for
7: end for
8: Return X
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11.3.1.3 Hierarchical Softmax
In the Skip-Gram algorithm, calculating probability P(ui |xun) is infeasible. Therefore, in the
DeepWalk model, hierarchical softmax is used to factorize the conditional probability. In hierarchical
softmax, a binary tree is constructed, where the number of leaves equals to the network node set
size, and each network node is assigned to a leaf node. The prediction problem is turned into a path
probability maximization problem. If a path (b0, b1, . . . , b-log |V |.) is identified from the tree root to
the node uk , i.e., b0 = root and b-log |V |. = uk , then the probability can be rewritten as

P(ui |xun) =
-log |V |.∏

l=1

P(bl |xun), (11.22)

where P(bl |xun) can be modeled by a binary classifier denoted as

P(bl |xun) =
1

1+ e
−x'

bl
·xun

. (11.23)

Here, the parameters involved in the learning process include the representations for both the nodes
in the network and the nodes in the constructed binary trees.

11.3.2 LINE

To handle the real-world information networks, the embedding models need to have several
requirements: (1) preserve the first-order and second-order proximity between the nodes, (2) scalable
to large sized networks, and (3) should be able to handle networks with different links: directed and
undirected, weighted and unweighted. In this part, we will introduce another homogeneous network
embedding model, named LINE [14], which can meet those requirements.

11.3.2.1 First-Order Proximity
In the network embedding process, the network structure should be effectively preserved, where the
node closeness is defined as the node proximity concept in LINE. The first-order proximity in a network
denotes the local pairwise proximity between nodes. For a link (u, v) ∈ E in the network, the first-
order proximity denotes the weight of link (u, v) in the network (or 1 if the network is unweighted).
Meanwhile, if link (u, v) doesn’t exist in the network, the first-order proximity between them will be 0
instead. To model the first-order proximity, for a given link (u, v) ∈ E in the networkG, LINE defines
the joint probability between nodes u and v as

p1(u, v) =
1

1+ e−x'
u ·xv

, (11.24)

where xu, xv ∈ Rd denote the vector representations of nodes u and v, respectively.
Function p1(·, ·) defines the proximity distribution in the space of V × V . Meanwhile, given a

network G, the empirical proximity between nodes u and v can be denoted as

p̂1(u, v) =
w(u,v)∑

(u,v)∈E w(u,v)
. (11.25)
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394 11 Network Embedding

To preserve the first-order proximity, LINE defines the objective function for the network
embedding as

J1 = d(p1(·, ·), p̂1(·, ·)), (11.26)

where function d(·, ·) denotes the distance between the introduced proximity distribution and the
empirical proximity distribution, respectively. By replacing the distance function d(·, ·) with the KL-
divergence and omitting some constants, the objective function can be rewritten as

J1 = −
∑

(u,v)∈E
w(u,v) logp1(u, v). (11.27)

By minimizing the objective function, LINE can learn the feature representation xu for each node
u ∈ V in the network.

11.3.2.2 Second-Order Proximity
In the real-world social networks, the links among the nodes can be very sparse, where the first-order
proximity can hardly preserve the complete structure information of the network. LINE introduces the
concept of second-order proximity, which denotes the similarity between the neighborhood structure
of nodes. Given a user pair (u, v) in the network, the more the common neighbors shared by them,
the closer the users u and v will be in the network. Besides the original representation xu for node
u ∈ V , the nodes are also associated with a feature vector representing its context in the network (i.e.,
the node neighborhood), which is denoted as yu ∈ Rd .

Formally, for a given link (u, v) ∈ E , we can represent the probability of context yv generated by
node u as

p2(v|u) =
ex

'
u ·yv

∑
v′∈V ex

'
u ·yv′

. (11.28)

Slightly different from the first-order proximity, the second-order empirical proximity is denoted as

p̂2(v|u) =
w(u,v)

D(u)
. (11.29)

By minimizing the difference between the introduced proximity distribution and the empirical
proximity distribution, the objective function for the second-order proximity can be represented as

J2 =
∑

u∈V
λud(p2(·|u), p̂2(·|u)), (11.30)

where λu denotes the prestige of node u in the network. Here, by replacing the distance function d(·|·)
with the KL-divergence and setting λu = D(u), the second-order proximity based objective function
can be represented as

J2 = −
∑

(u,v)∈E
w(u,v) logp2(v|u). (11.31)
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11.3.2.3 Model Optimization
Instead of combining the first-order proximity and second-order proximity into a joint optimization
function, LINE learns the embedding vectors based on Eqs. (11.27) and (11.31), respectively, which
will be further concatenated together to obtain the final embedding vectors.

In optimizing objective function in Eq. (11.31), LINE needs to calculate the conditional probability
P(·|u) for all nodes u ∈ V in the network, which is computationally infeasible. To solve the problem,
LINE uses the negative sampling approach instead. For each link (u, v) ∈ E , LINE samples a set of
negative links according to some noisy distributions.

Formally, for link (u, v) ∈ E , we can represent the set of negative links sampled for it as L−
(u,v) ⊂

V × V . The objective function defined for link (u, v) can be represented as

log σ (y'
v · xu)+

∑

(u,v′)∈L−
(u,v)

log σ (−y'
v′ · xu), (11.32)

where σ (·) is the sigmoid function. The first term in the above equation denotes the observed links, and
the second term represents the negative links drawn from the noisy distribution. Similar approach can
also be applied to solve the objective function in Eq. (11.27) as well. The new objective function can
be solved with the asynchronous stochastic gradient algorithm (ASGD), which samples a minibatch
of links and then updates the parameters.

11.3.3 node2vec

In LINE, the closeness among nodes in the networks is preserved based on either the first-order
proximity or the second-order proximity. In a recent work, node2vec [6], the researchers propose
to preserve the proximity between nodes with a sampled set of nodes in the network.

11.3.3.1 node2vec Framework
Model node2vec is based on the Skip-Gram [10] in language modeling, and the objective function of
node2vec can be formally represented as

max
∑

u∈V
logP(Γ (u)|xu), (11.33)

where xu denotes the latent feature vector learnt for node u and Γ (u) represents the neighbor set of
node u in the network.

To simplify the problem and make the problem solvable, some assumptions are made to
approximate the objective function into a simpler form.

• Conditional Independence Assumption: Given the latent feature vector xu of node u, by assuming
the observation of node in set Γ (u) to be independent, the probability equation can be rewritten as

P(Γ (u)|xu) =
∏

v∈Γ (u)

P (v|xu). (11.34)
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• Symmetric Node Effect: Furthermore, by assuming that the source and neighbor nodes have a
symmetric effect on each other in the feature space, the conditional probability P(v|xu) can be
rewritten as

P(v|xu) =
ex

'
v ·xu

∑
v′∈V ex

'
v′ ·xu

. (11.35)

Therefore, the objective log likelihood function can be simplified as

max
X

∑

u∈V

[
− logZu +

∑

v′∈Γ (u)

x'
v′ · xu

]
, (11.36)

whereZu =∑v′∈V ex
'
v′ ·xu . The termZu will be different for different nodes u ∈ V , which is expensive

to compute for large networks, and node2vec proposes to apply the negative sampling technique
instead. The main issue discussed in node2vec is about sampling the neighborhood set Γ (u) from the
network, which can be obtained with either BFS or DFS based sampling strategies to be introduced
as follows.

11.3.3.2 BFS and DFS Based Neighborhood Sampling
In Skip-Gram, neighborhood set Γ (u) denotes the direct neighbors of u in the network, i.e., the first-
order proximity of network local structures. Besides the local structure, node2vec can also capture
other network structures with set Γ (u) depending on the sampling strategy being applied. To fairly
compare different sampling strategies, the neighborhood set Γ (u) is usually limited with size k, i.e.,
|Γ (u)| = k. Two extreme sampling strategies for the neighborhood set Γ (u) are

• BFS: BFS samples the nodes directly connected to node u and involves them in the neighborhood
set Γ (u) first, and then go to the second layer, where the nodes are two hopes away from u in the
network, until the size k is met. Generally, the Γ (u) sampled via BFS can sufficiently characterize
the local neighborhood structure of the network. The node2vec model learnt based on the DFS
sampling strategy provides a micro-view of the network structure.

• DFS: DFS samples the nodes which are sequentially reachable from u at an increasing distance
and involves them into the neighborhood set Γ (u) first. In DFS, the sampled nodes reflect a more
global neighborhood of users in the network. The node2vec model learnt based on BFS sampling
strategy provides a macro-view of the network neighborhood structure of the network, which can
be essential for inferring the communities based on homophily.

However, the BFS and DFS sampling strategies may also suffer from some shortcomings. For BFS,
only a small proportion of the network is explored surrounding node u in the sampling. Meanwhile,
for DFS, the sampled nodes far away from the source node u tend to involve complex dependencies
relationships.

11.3.3.3 RandomWalk Based Search
To overcome the shortcomings of BFS and DFS, node2vec proposes to apply random walk to sample
the neighborhood set Γ (u) instead. Given a random walk W , we can represent the node where the
random walk W resides at in step i as variable si ∈ V . The complete sequence of nodes that W has
resides at can be represented as s0, s1, . . . , sk , where s0 denotes the initial node starting the random
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walk. The transitional probability from node u to v in randomwalkW at the ith step can be represented
as

P(si = v|si−1 = u) =
{
w(u,v) if (u, v) ∈ E,
0, otherwise,

(11.37)

where w(u,v) denotes the normalized weight of link (u, v) in the network.
Traditional random walk model doesn’t take account for the network structure and can hardly

explore different network neighborhoods. node2vec adapts the random walk model and introduces the
2nd order random walk model with parameters p and q, which will help to guide the random walk. In
node2vec, let’s assume that the random walk just traversed link (t, u) and can go to node v in the next
step. Formally, the transitional probability of link (u, v) is adjusted with parameter αp,q(t, v) (i.e.,
w(u,v) = αp,q(t, v) · w(u,v)), where

αp,q(t, v) =






1
p , if dt,v = 0,

1, if dt,v = 1,
1
q , if dt,v = 2,

(11.38)

where dt,v denotes the shortest distance between nodes t and v in the network. Since the walk can go
from t to u, and then from u to v, the distance from t to v will be at most 2.

Parameters p and q control the random walk transition sequence effectively, where parameter p is
also called the return parameter and q is called the in-out parameter in node2vec.

• Return Parameter p: In the case that dt,v = 0, i.e., t = v, the probability adjusting parameter 1
p

controls the chance for the random walk to return to the node t . By assigning p with a large value,
the random walk model will have a lower chance to go back to node t that the model has just
visited. Meanwhile, by assigning p with a small value, the random walk model will backtrack a
step and keep exploring the local nodes that it has visited already.

• In-out Parameter q: In the case that dt,v = 2, nodes t and v are not directly connected but are
reachable via the intermediate node u. Therefore, parameter q controls the chance of exploring the
structure that is far away from the visited nodes. If q > 1, the random walk model is biased to
explore nodes that are closer to t , since 1

q is smaller than the probability of visiting nodes in case
that dt,v = 1. Meanwhile, if q < 1, the random walk will be inclined to visit nodes that are far
away from t in the network instead.

Based on a well-selected parameters p and q, the node2vec model will be able to utilize both local
and global network structures in the node representation learning.

11.4 Heterogeneous Network Embedding

The embedding models introduced in the previous sections are mainly proposed for homogeneous
networks, which will encounter great challenges when applied to embed the heterogeneous networks.
In this section, we will talk about the recent development of embedding problems for heterogeneous
networks, and introduce three latest heterogeneous network embedding models, including HNE (het-
erogeneous information network embedding) [2], path-augmented heterogeneous network embedding
[3], and HEBE (HyperEdge based embedding) [7].
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11.4.1 HNE: Heterogeneous Information Network Embedding

Generally, the data available in the online social networks doesn’t exist in isolation, and different
types of data may co-exist simultaneously. For instances, in the posts and articles written by users
online, there may exist both text and image. The co-existence interactions of text and image in the
same articles can be formed either explicitly or implicitly with the linkages between text and images.
Meanwhile, there also exist correlations between the text data and image data due to the hyperlinks
among the text and common tags/categories shared by different images. TheHNE [2] model is initially
proposed for a heterogeneous information network involving text and image.

11.4.1.1 Terminology Definition and Problem Formulation
The network studied in HNE involves both text and images, which can be represented as the text–
image heterogeneous information network as follows:

Definition 11.1 (Text–Image Heterogeneous Information Network) Let G = (V, E) denote the
heterogeneous information network involving text and image as the nodes, as well as diverse
categories of links among them. Formally, the node set V can be decomposed into two disjoint subsets
V = T ∪I, where T denotes the text node set and I represents the image node set. Meanwhile, among
the text, image as well as between text and images, there may exist different kinds of connections,
which can be denoted as sets ET ,T , EI,I , and ET ,I , respectively, in the link set E . In other words, we
have E = ET ,T ∪ ET ,I ∪ EI,I .

Furthermore, the text and image nodes are also summarized by unique content information. For
instance, for each image ik ∈ I, it can be represented as a 3-way tensor xk ∈ RdI×dI×3, where dI
denotes the dimension of the image and values in xk correspond to the pixels of the image in the
RGB color space. Meanwhile, for each text tk ∈ T , it can be represented as a raw feature vector
zk ∈ RdT as well, where dT denotes the dimension of the text represented with the bag-of-words
vectors normalized by TF-IDF [12]. For the images involved in set I, the connections among them
can be represented as matrix AI,I ∈ {+1,−1}|I|×|I|, where entry AI,I (j, k) = +1 if there exist a
link connecting nodes ij and ik in the network; otherwise, we will have AI,I (j, k) = −1. In a similar
way, we can also define the adjacency matrices AT,T and AI,T to represent the connections among
texts as well as those between images and texts.

For all the connections among nodes in set V , they can be represented with matrix A ∈
{+1,−1}|V |×|V |, which groups matrices AI,I , AT ,I , AI,T , and AT ,T together. In the matrix, entry
A(i, j) = +1 if the corresponding nodes are connected by a link in the network; and A(i, j) = −1,
otherwise.

To handle the diverse information in the text–image heterogeneous information network, a good
way is to learn the feature vector representations of nodes inside the network. Formally, the network
embedding problem studied here includes the learning of mappings U : x → Rr and V : z → Rr

which will project the images and texts into a shared feature space of dimension r . Furthermore, the
network structure can be preserved in the embedding results, where the connected nodes should be
projected to a close region and unconnected nodes will be separated apart instead.

11.4.1.2 HNEModel
For each image ik ∈ I, HNE proposes to transform its representation from 3-way tensor xk into
a column vector xk ∈ Rd ′

I , where d ′
I denotes the dimension of the feature vector space. Different

methods can be applied in the transformation. For instance, a simple way to do the transformation is
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to stack the column vectors of the image and append them together, in which case d ′
I will be equal to

dI × dI × 3. Some other advanced techniques have also been proposed, like feature extraction of the
images as well as pre-embedding of images, which will not be introduced here since they are not part
of the network embedding problem studied in this section.

Formally, we can denote the linear mapping functions for the image and text data as matrices
U : x → Rr and V : z → Rr , which project the data into a feature space of dimension r . The
embedding process of image ij ∈ I and text tk ∈ T can be denoted as

x̃j = U'xj , (11.39)

z̃k = V'zk, (11.40)

where vectors x̃j and z̃k denote the embedded feature representations of image ij and text tk ,
respectively.

The similarity between the embedded feature representation of images and texts can be defined as

s(xj , xk) = x̃'
j x̃k = x'

j (UU
')xk = x'

j MI,Ixk, (11.41)

s(zj , zk) = z̃'j z̃k = z'j (VV
')zk = z'j MT ,T zk, (11.42)

respectively. Furthermore, since the images and texts are embedded into a common feature space, the
similarity between the nodes of different categories can be represented as

s(xj , zk) = x̃'
j z̃k = x'

j (UV
')zk = x'

j MI,T zk. (11.43)

In the above equations, via the positive semi-definite matricesMI,I ,MT ,T ,MI,T the similarity of the
texts and images can be effectively captured.

Meanwhile, based on the network structure, the empirical similarities of the nodes in the networks
can be denoted by their structures. For instance, the empirical similarity between images ij , ik ∈ I
can be denoted as

ŝ(xj , xk) = AI,I (j, k). (11.44)

To ensure similar images will be projected into a close region, the loss function introduced by the
image pair ij , ik is defined as

L(xj , xk) = log
(
1+ e(−AI,I (j,k)s(xj ,xk))

)
. (11.45)

In a similar way, the loss functions for the text pairs, and image–text pairs can also be defined. By
combining the loss functions together, the objective function of HNE can be represented as

min
U,V

1
NI,I

∑

ij ,ik∈I
L(xj , xk)+

λ1

NT,T

∑

tj ,tk∈T
L(zj , zk)+

λ2

NI,T

∑

ij∈I,tk∈T
L(xj , zk)

+ λ3(‖U‖2F + ‖V‖2F ), (11.46)

where NI,I = |I × I \ {(ij , ij )}ij∈I | denotes the number of image pairs, and λ1, λ2, λ3 denote the
weights of the loss terms introduced by texts, image–text, and the regularization terms, respectively.
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The function can be solved alternatively with coordinate descent by fixing one variable and updating
the other variable. More detailed information about the solution is available in [2].

11.4.2 Path-Augmented Heterogeneous Network Embedding

For most of the embedding models, they are based on the assumptions that the node feature
representations can be learnt with the neighborhood. Here, the neighborhood denotes either the set
of nodes directly connected to the target node or the nodes accessible to the target node via a random
walk. In [3], a new heterogeneous network embedding model has been introduced, which uses the
meta path to exploit the rich information in heterogeneous networks.

In the path-augmented network embedding model (PANE), a set of meta paths are defined based
on the heterogeneous network schema. For the node pairs in the network which are connected based
on each of the meta paths, their correlation is represented with a meta path-augmented adjacency
matrix. For instance, based on the rth type of meta path, the corresponding adjacency matrix can be
denoted as Mr . In heterogeneous networks, some of the meta paths will have lots of concrete meta

path instances connecting nodes. For instance, in the online social networks, the meta path “User
write−−→

Post
contain−−−−→ Word

contain←−−−− Post
write←−− User” will have lots of instances, since users write lots of posts

and each post will contain many words. The raw adjacency matrix will contain very large numbers in
its representations. Therefore, matrixMr is usually normalized to ensure

∑
i,j M

r(i, j) = 1.
The learning framework used here is very similar to those introduced LINE and node2vec in

Sects. 11.3.2 and 11.3.3. The proximity between nodes ni, nj ∈ V based on the rth meta path can be
denoted as

P(nj |ni; r) =
ex

'
i xj

∑
j ′∈DST (r) e

x'
i xj

, (11.47)

where xi and xj denote the embedding vectors of nodes ni and nj , respectively, and DST (r) denotes
the set of all possible nodes that are in the destination side of path r .

In the real world, setDST (r) is usually very large, which renders the above conditional probability
very expensive to compute. In [3], the authors propose to follow the techniques proposed in
the existing works and apply negative sampling to reduce the computational costs. Formally, the
approximated objective function can be represented as

log P̃ (nj |ni; r) ≈ logσ (x'
i xj )+

k∑

l=1

Enj ′∼P r
n (nj ′ )[log σ (−x'

i xj ′ − br)], (11.48)

where j ′ denotes the negative node sampled from the pre-defined noise distribution, k denotes the
number of sampled nodes, and br is the bias term added for the rth meta path. The embedding vectors
xni for node ni in the network as well as the bias terms br for the rth meta path can be learnt with the
stochastic gradient descent method.

11.4.3 HEBE: HyperEdge Based Embedding

The embedding models proposed so far mostly only consider the single typed objective interactions,
while the strongly typed objects involving multiple kinds of interactions among different objectives
have achieved an increasing interest in recent years. In this part, we will introduce a new embedding
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framework HEBE (HyperEdge based embedding) [7], which captures strongly typed objective
interactions as a whole in the embedding process.

11.4.3.1 Terminology Definition and Problem Formulation
In HEBE, the subgraph centered with one certain type of target object in the whole network is defined
as an event [7]. Depending on the number of node types involved in the event, they can be further
categorized into homogeneous event and heterogeneous event.

Definition 11.2 (Event) Formally, the objects involved in the network can be represented as set X =
{Xt }Tt=1, where Xt denotes the set of objects belonging to the t th type. An event Qi is denoted as a
subset of nodes involved in it and can be represented as (Vi , wi), where Vi denotes the set of involved
objects and wi is the occurrence number of event Qi in the network. The object set Vi can be further
divided into several subsets Vi =

⋃T
t=1 V t

i depending on the object categories.

In the above event definition, links connecting the nodes in the network are involved in by default,
which are not mentioned here for simplicity reasons. For event Qi = (Vi , wi), if more than one type
of nodes are covered, it will be called a homogeneous event; otherwise, it is a heterogeneous event.

Formally, the set of events involved in the network can be represented as event data D = {Qi}Ni .
In the embedding problem, the objective is to learn a function f : X → Rd to project the different
types of objects involved in the event data D into a shared feature space of dimension d. Meanwhile,
the proximity of each event should be preserved. Here, the proximity of an event is defined as the
likelihood of observing a target object given all other participating objects in the same event.

Example 11.1 For instance, as introduced in [7], in Fig. 11.4, we illustrate two examples about the
events involved in a location-based social network. As shown in the plot, there are two types of events.
The first event type (left) is business profile, the participating object types of which include terms in
name and business; the second event type (right) is the review event, including user, business, and
term types. The business objects type participates in both event types.

Fig. 11.4 Event schema
of location-based social
networks with two event
types: business profile
(left) and review (right)

User

Review

Business Term

Business

Term(s)
In Name

Write

Contain
Target

Index
Contain

Event Type II

Event Type I
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11.4.3.2 Objective Function
Given an eventQi = (Vi , wi), let u ∈ Vi denote an object involved in the event. The remaining nodes
in the event can be denoted as the context of u, i.e., C = Vi \ {u}. Let’s assume object u belongs
to category X1 (i.e., u ∈ X1), the probability of predicting the target object u given its context C is
defined as

P(u|C) = eS(u,C)
∑

v∈X1
eS(v,C)

, (11.49)

where S(u, C) denotes the similarity between u and context C and can be calculated by summing the
inner products of object pairs in {u} × C.

The loss function defined in HEBE is based on the Kullback–Leibler (KL) divergence between the
conditional probability P(·|C) and the empirical probability P̂ (·|C), which can be defined as

L = −
T∑

t=1

∑

Ct∈Pt

λCt KL(P (·|C), P̂ (·|C)), (11.50)

where λCt denotes the weight of context Ct and is defined as the occurrence of it in the event data D

λCt =
N∑

i=1

wiI(Ct ∈ Vi )

|Pi,t |
. (11.51)

In the above equation, Pt denotes the sample space of context Ct and Pi,t is the constrained sample
space by object set Vi . Function I(·) is a binary function which takes value 1 if the condition holds.
By replacing λCt , the loss function can be rewritten as follows:

L = −
N∑

i=1

wi

T∑

t=1

1
|Pi,t |

∑

Ct∈Pt

P (·|C). (11.52)

11.4.3.3 Learning AlgorithmDescription
The conditional probability involved in the loss function is very hard to calculate especially in the
case that the object set X1 that u belongs to is very big. To address the problem, HEBE proposes to
use the noise pairwise ranking (NPR) to approximate the probability calculation instead.

Formally, the conditional probability function can be rewritten as

P(u|C) =



1+
∑

v∈X1\{u}
eS(v,C)−S(u,C)




−1

. (11.53)

Instead of enumerating all the nodes v ∈ X1 \ {u}, a small set of noise samples are selected from
X1 \ {u}, where an individual noise sample can be denoted as vn. HEBE proposes to maximize the
following probability instead:

P(u > un|C) = σ (−S(vn, C)+ S(u, C)). (11.54)
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It is shown that

P(u|C) >
∏

vn *=u

P (u > vn|C). (11.55)

And the conditional probability can be approximated as follows:

P(u|C) ∝ Evn∼Pn logP(u > vn|C), (11.56)

where Pn denotes the noise distribution and it is set as Pn ∝ D(u)
3
4 with regarding to the degree of u.

By replacing the probability into the loss function, the loss function will be

L̃ = −
N∑

i=1

wi

T∑

t=1

1
|Pi,t |

∑

Ct∈Pt

Evn∼Pn logP(u > vn|C). (11.57)

The objective function can be solved with the asynchronous stochastic gradient descent (ASGD)
algorithm in HEBE, and we will not talk about the learning detail here, since it is out of the scope of
this chapter.

11.5 Emerging Network Embedding Across Networks

We have introduced several network embedding models in the previous sections already. However,
when applied to handle real-world social network data, these existing embedding models can hardly
work well. The main reason is that the network internal social links are usually very sparse in online
social networks [14]. For a pair of users who are not directly connected, these models will not be able
to determine the closeness of these users’ feature vectors in the embedding space. Such a problem
will be more severe when it comes to the emerging social networks [18, 21], which denote the newly
created online social networks containing very few social connections.

In this section, we will study the emerging network embedding problem across multiple aligned
heterogeneous social networks simultaneously, namely the MNE problem [21]. In the concurrent
embedding process, MNE aims at distilling relevant information from both the emerging and other
aligned mature networks to derive compliment knowledge and learn a good vector representation for
user nodes in the emerging network.

The MNE problem studied in this section is significantly different from existing network
embedding problems [1–3, 6, 8, 11, 14, 16] in several perspectives. First of all, the target network
studied in MNE are emerging networks suffering from the information sparsity problem a lot, which
is different from the embedding problems for regular networks [1–3, 8, 16]. Secondly, the networks
studied in MNE are all heterogeneous networks containing complex links and diverse attributes,
which renders MNE different from existing homogeneous network embedding problems [6, 11, 14].
Furthermore, MNE is based on the multiple aligned networks setting, where information from aligned
networks will be exchanged to refine the embedding results mutually, and it is different from the
existing single-network based embedding problems [1–3,6, 8, 11, 14, 16].

To solve the problem, in this section, we introduce a novel multiple aligned heterogeneous social
network embedding framework, named DIME [21]. To handle the heterogeneous link and attribute
information in the networks in a unified analytic, DIME introduces the aligned attribute augmented
heterogeneous network concept. From these networks, a set of meta paths are introduced to represent
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the diverse connections among users in online social networks (via social links, other heterogeneous
connections, and diverse attributes). A set of meta proximity measures are defined for each of the
meta paths denoting the closeness among users. These meta proximity information will be fed into
a deep learning framework, which takes the input information from multiple aligned heterogeneous
social networks simultaneously, to achieve the embedding feature vectors for all the users in these
aligned networks. Based on the connection among users, framework DIME aims at embedding
close user nodes to a close area in the lower-dimensional feature space for each of the social
network, respectively. Meanwhile, framework DIME also poses constraints on the feature vectors
corresponding to the shared users across networks to map them to a relatively close region as well. In
this way, information can be transferred from the mature networks to the emerging network and solve
the information sparsity problem.

11.5.1 Concept Definition and Problem Formulation

The social networks studied here contain different categories of nodes and links, as well as very diverse
attributes attached to the nodes. To handle the diverse links and attributes in a unified analytic, we can
represent these network structured data as the attributed heterogeneous social networks formally.

Definition 11.3 (Attributed Heterogeneous Social Networks) The attributed heterogeneous social
network can be represented as a graph G = (V, E, T ), where V = ⋃

i Vi denotes the set of nodes
belonging to various categories and E = ⋃i Ei represents the set of diverse links among the nodes.
What’s more, T =

⋃
i Ti denotes the set of attributes attached to the nodes in V . For user u in the

network, we can represent the ith type of attribute associated with u as Ti(u), and all the attributes u
has can be represented as T (u) =⋃i Ti(u).

The social network data sets used in this section include Foursquare and Twitter. Formally, the
Foursquare and Twitter can both be represented as the attributed heterogeneous social networks G =
(V, E, T ), where V = U ∪P involves the user and post nodes, and E = Eu,u ∪ Eu,p contains the links
among users and those between users and posts. In addition, the nodes in V are also attached with a set
of attributes, i.e., T . For instance, for the posts written by users, we can obtain the contained textual
contents, timestamps, and check-ins, which can all be represented as the attributes of the post nodes.

Between Foursquare and Twitter, there may exist a large number of shared common users, who
can align the networks together. The user account correspondence relationships can be denoted as the
anchor links across networks. Meanwhile, the networks connected by the anchor links are called the
multiple aligned attributed heterogeneous social networks (or aligned social networks for short).

For the Foursquare and Twitter social networks used here, we can represent them as two aligned
social networks G = ((G(1),G(2)), (A(1,2))), which will be used as an example to illustrate the
models. A simple extension of the proposed framework can be applied to k aligned networks very
easily.

Formally, given two aligned networks G = ((G(1),G(2)), (A(1,2))), where G(1) is an emerging
network and G(2) is a mature network. In the MNE problem, we aim at learning a mapping
function f (i) : U (i) → Rd(i) to project the user node in G(i) to a feature space of dimension d(i)

(d(i) 5 |U |(i)). The objective of mapping functions f (i) is to ensure that the embedding results
can preserve the network structural information, where similar user nodes will be projected to close
regions. Furthermore, in the embedding process, MNE also wants to transfer information between
G(2) and G(1) to overcome the information sparsity problem in G(1).
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11.5.2 Deep DIME for Emerging Network Embedding

For each attributed heterogeneous social network, the closeness among users can be denoted by the
friendship links among them, where friends tend to be closer compared with user pairs without
connections. Meanwhile, for the users who are not directly connected by the friendship links, few
existing embedding methods can figure out their closeness, as these methods are mostly built based
on the direct friendship link only. In this section, we will introduce how to infer the potential closeness
scores among the users with the heterogeneous information in the networks based on meta path
concept [13], which are formally called the meta proximity.

11.5.2.1 Friendship BasedMeta Proximity
In online social networks, the friendship links are the most obvious indicator of the social closeness
among users. Online friends tend to be closer with each other compared with the user pairs who are
not friends. Users’ friendship links also carry important information about the local network structure
information, which should be preserved in the embedding results. Based on such an intuition, the
friendship based meta proximity concept can be defined as follows.

Definition 11.4 (Friendship Based Meta Proximity) For any two user nodes u(1)i , u
(1)
j in an online

social network (e.g., G(1)), if u(1)i and u
(1)
j are friends in G(1), the friendship based meta proximity

between u
(1)
i and u

(1)
j in the network is 1; otherwise, the friendship based meta proximity score

between them will be 0 instead. To be more specific, we can represent the friendship based meta
proximity score between users u(1)i , u

(1)
j as p(1)(u

(1)
i , u

(1)
j ) ∈ {0, 1}, where p(1)(u

(1)
i , u

(1)
j ) = 1 iff

(u
(1)
i , u

(1)
j ) ∈ E (1)

u,u.

Based on the above definition, the friendship based meta proximity scores among all the users
in network G(1) can be represented as matrix P(1)

Φ0
∈ R|U (1)|×|U (1)|, where entry P

(1)
Φ0

(i, j) equals to

p(1)(u
(1)
i , u

(1)
j ). Here Φ0 denotes the simplest meta path of length 1 in the form U

follow−−−−→ U, and its
formal definition will be introduced in the following subsection.

When networkG(1) is an emerging online social network which has just started to provide services
for a very short time, the friendship links among users inG(1) tend to be very limited (majority of the
users are isolated in the network with few social connections). In other words, the friendship based
meta proximitymatrix P(1)

Φ0
will be extremely sparse, where very few entries will have value 1 and most

of the entries are 0s. With such a sparse matrix, most existing embedding models will fail to work.
The reason is that the sparse friendship information available in the network can hardly categorize the
relative closeness relationships among the users (especially for those who are even not connected by
friendship links), which renders that these existing embedding models may project all the nodes to
random regions.

To overcome such a problem, besides the social links, DIME also proposes to calculate the
potential proximity scores for the users with the diverse link and attribute information available in
the heterogeneous networks. Based on a new concept named attribute augmented meta path, a set of
meta proximity measures will be defined with each of the meta paths, which will be introduced in the
following sections.

11.5.2.2 Attribute AugmentedMeta Path
To handle the diverse links and attributes simultaneously in a unified analytic, DIME treats the
attributes as nodes and introduces the attribute augmented network. If a node has certain attributes, a
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new type of link “have” will be added to connect the node and the newly added attribute node. The
structure of the attribute augmented network can be described with the attribute augmented network
schema as follows.

Definition 11.5 (Attribute Augmented Network Schema) Formally, the network schema of a given
online social network G(1) = (V, E) can be represented as SG(1) = (NV ∪ NT ,RE ∪ {have}), where
NV andNT denote the set of node and attribute categories in the network, whileRE represents the set
of link types in the network, and {have} represents the relationship between node and attribute node
types.

For instance, about the attributed heterogeneous social network introduced studied in this section,
we can represent its network schema as SG(1) = (NV ∪ NT ,RE ∪ {have}). The node type set NV
involves node types {User,Post} (or {U,P} for simplicity), while the node attribute type set NT
includes {Word, Time, Location} (or {W,T,L} for short). As to the link types involved in the network,
the link type set RE contains {follow,write}, which represents the friendship link type and the write
link type, respectively.

Based on the attribute augmented network schema, a set of different social meta path
{Φ0,Φ1,Φ2, . . . ,Φ7} can be extracted from the network, whose notations, concrete representations,
and the physical meanings are illustrated in Table 11.1. Here, meta paths Φ0 −Φ4 are all based on the
user node type and follow link type; meta paths Φ5 − Φ7 involve the user, post node type, attribute
node type, as well as the write and have link type. Based on each of the meta paths, there will exist
a set of concrete meta path instances connecting users in the networks. For instance, given a user
pair u and v, they may have been checked-in at 5 different common locations, which will introduce 5
concrete meta path instances of meta path Φ7 connecting u and v indicating their strong closeness (in
location check-ins). In the next subsection, we will introduce how to calculate the proximity scores
for the users based on these extracted meta paths.

11.5.2.3 Heterogeneous NetworkMeta Proximity
The set of attribute augmented social meta paths {Φ0,Φ1,Φ2, . . . ,Φ7} extracted in the previous
subsection create different kinds of correlations among users (especially for those who are not directly

Table 11.1 Summary of social meta paths (for both Foursquare and Twitter)

ID Notation Heterogeneous network meta path Semantics

Φ0 U → U User
follow−−−→ User Follow

Φ1 U → U → U User
follow−−−→ User

follow−−−→ User Follower of follower

Φ2 U → U ← U User
follow−−−→ User

follow−1

−−−−−→ User Common out neighbor

Φ3 U ← U → U User
follow−1

−−−−−→ User
follow−−−→ User Common in neighbor

Φ4 U ← U ← U User
follow−1

−−−−−→ User
follow−1

−−−−−→ User Common in neighbor

Φ5 U → P → W ← P ← U User
write−−→ Post

have−−→ Word Posts containing
have−1

−−−−→ Post
write−1

−−−−→ User Common words

Φ6 U → P → T ← P ← U User
write−−→ Post

have−−→ Time Posts containing
have−1

−−−−→ Post
write−1

−−−−→ User Common timestamps

Φ7 U → P → L ← P ← U User
write−−→ Post

have−−→ Location Posts attaching
have−1

−−−−→ Post
write−1

−−−−→ User Common check-ins
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connected by friendship links). With these social meta paths, different types of proximity scores
among the users can be captured. For instance, for the users who are not friends but share lots of
common friends, they may also know each other and can be close to each other; for the users who
frequently checked-in at the same places, they tend to be more close to each other compared with those
isolated ones with nothing in common. Therefore, these meta paths can help capture much broader
network structures compared with the local structure captured by the friendship based meta proximity
talked about in Sect. 11.5.2.1. In this part, we will introduce the method to calculate the proximity
scores among users based on these social meta paths.

As shown in Table 11.1, all the social meta paths extracted from the networks can be represented
as set {Φ1,Φ2, . . . ,Φ7}. Given a pair of users, e.g., u(1)i and u

(1)
j , based on meta path Φk ∈

{Φ1,Φ2, . . . ,Φ7}, we can represent the set of meta path instances connecting u
(1)
i and u

(1)
j as

P(1)
Φk

(
u
(1)
i , u

(1)
j

)
. Users u(1)i and u(1)j can have multiple meta path instances going into/out from them.

Formally, we can represent all the meta path instances going out from user u(1)i (or going into u
(1)
j ),

based on meta path Φk , as set P(1)
Φk

(
u
(1)
i , ·

)
(or P(1)

Φk
(·, u(1)j )). The proximity score between u

(1)
i and

u
(1)
j based on meta path Φk can be represented as the following meta proximity concept formally.

Definition 11.6 (Meta Proximity) Based on social meta path Φk , the meta proximity between users
u
(1)
i and u

(1)
j in network G(1) can be represented as

p
(1)
Φk

(
u
(1)
i , u

(1)
j

)
=

2|P(1)
Φk

(
u
(1)
i , u

(1)
j

)
|

|P(1)
Φk

(
u
(1)
i , ·

)
| + |P(1)

Φk

(
·, u(1)j

)
|
. (11.58)

Meta proximity considers not only the meta path instances between users but also penalizes the
number of meta path instances going out from/into u(1)i and u(1)j at the same time. It is also reasonable.
For instance, sharing some common location check-ins with some extremely active users (who have
tens of thousands check-ins) may not necessarily indicate closeness with them, since they may have
common check-ins with so many other users due to his very large check-in record volume.

With the above meta proximity definition, we can represent the meta proximity scores among
all users in the network G(1) based on meta path Φk as matrix P(1)

Φk
∈ R|U (1)|×|U (1)|, where entry

P
(1)
Φk

(i, j) = p
(1)
Φk

(
u
(1)
i , u

(1)
j

)
. All the meta proximity matrices defined for network G(1) can be

represented as
{
P(1)

Φk

}

Φk

. Based on the meta paths extracted for network G(2), similar matrices can

be defined as well, which can be denoted as
{
P(2)

Φk

}

Φk

.

11.5.2.4 Deep DIME-SHModel
With these calculated meta proximity introduced in the previous section, we will introduce the
embedding framework DIME next. DIME is based on the aligned autoencoder model, which extends
the traditional deep autoencoder model to the multiple aligned heterogeneous networks scenario. In
this part, we will talk about the embedding model component for one heterogeneous information
network in Sect. 11.5.2.4, which takes the various meta proximity matrices as the input. DIME
effectively couples the embedding process of the emerging network with other aligned mature
networks, where cross-network information exchange and result refinement is achieved via the loss
term defined based on the anchor links, which will be introduced in the next part.
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Fig. 11.5 The DIME framework

When applying the autoencoder model for one single homogeneous network node embedding, e.g.,
for G(1), we can fit the model with the node meta proximity feature vectors, i.e., rows corresponding
to users in matrix P(1)

Φ0
(introduced in Sect. 11.5.2.1). In the case that G(1) is heterogeneous, multiple

node meta proximity matrices have been defined before (i.e.,
{
P(1)

Φ0
,P(1)

Φ1
, . . . ,P(1)

Φ7

}
), how to fit these

matrices simultaneously to the autoencoder models is an open problem. In this part, we will introduce
the single-heterogeneous-network version of framework DIME, namely DIME-SH, which will be
used as an important component of framework DIME as well. For each user node in the network,
DIME-SH computes the embedding vector based on each of the proximity matrix independently first,
which will be further fused to compute the final latent feature vector in the output hidden layer.

As shown in the architecture in Fig. 11.5 (either the left component for network 1 or the right
component for network 2), about the same instance, DIME-SH takes different feature vectors extracted
from the meta paths {Φ0,Φ1, . . . ,Φ7} as the input. For each meta path, a series of separated encoder
and decoder steps are carried out simultaneously, whose latent vectors are fused together to calculate
the final embedding vector z(1)i ∈ Rd(1) for user u(1)i ∈ V(1). In the DIME-SH model, the input
feature vectors (based on meta path Φk ∈ {Φ0,Φ1, . . . ,Φ7}) of user ui can be represented as x(1)i,Φk

,

which denotes the row corresponding to users u
(1)
i in matrix P(1)

Φk
defined before. Meanwhile, the

latent representation of the instance based on the feature vector extracted via meta path Φk at different
hidden layers can be represented as

{
y(1),1i,Φk

, y(1),2i,Φk
, . . . , y(1),oi,Φk

}
.

One of the significant difference of model DIME-SH from traditional autoencoder model lies in
the (1) combination of various hidden vectors

{
y(1),oi,Φ0

, y(1),oi,Φ1
, . . . , y(1),oi,Φ7

}
to obtain the final embedding
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vector z(1)i in the encoder step, and (2) the dispatch of the embedding vector z(1)i back to the hidden
vectors in the decoder step. As shown in the architecture, formally, these extra steps can be represented
as






# extra encoder steps

y(1),o+1
i = σ

(∑
Φk∈{Φ0,...,Φ7}W

(1),o+1
Φk

y(1),oi,Φk
+ b(1),o+1

Φk

)
,

z(1)i = σ
(
W(1),o+2y(1),o+1

i + b(1),o+2
)
.

# extra decoder steps

ŷ(1),o+1
i = σ

(
Ŵ(1),o+2z(1)i + b̂(1),o+2

)
,

ŷ(1),oi,Φk
= σ

(
Ŵ(1),o+1

Φk
ŷ(1),o+1
i + b̂(1),o+1

Φk

)
.

(11.59)

What’s more, since the input feature vectors are extremely sparse (lots of the entries have value 0s),
simply feeding them to the model may lead to some trivial solutions, like 0 vectors for both z(1)i and the
decoded vectors x̂(1)i,Φk

. To overcome such a problem, another significant difference of model DIME-
SH from traditional autoencoder model lies in the loss function definition, where the loss introduced
by the non-zero features will be assigned with a larger weight. In addition, by adding the loss function
for each of the meta paths, the final loss function in DIME-SH can be formally represented as

L(1) =
∑

Φk∈{Φ0,...,Φ7}

∑

ui∈V

∥∥∥
(
x(1)i,Φk

− x̂(1)i,Φk

)
6 b(1)i,Φk

∥∥∥
2

2
, (11.60)

where vector b(1)i,Φk
is the weight vector corresponding to feature vector x(1)i,Φk

. Entries in vector b(1)i,Φk

are filled with value 1 except the entries corresponding to non-zero element in x(1)i,Φk
, which will be

assigned with value γ (γ > 1 denoting a larger weight to fit these features). In a similar way, we can
define the loss function for the embedding result in network G(2), which can be formally represented
as L(2).

11.5.2.5 Deep DIME Framework
DIME-SH has incorporate all these heterogeneous information in the model building, the meta
proximity calculated based on which can help differentiate the closeness among different users.
However, for the emerging networks which just start to provide services, the information sparsity
problem may affect the performance of DIME-SH significantly. In this part, we will introduce DIME,
which couples the embedding process of the emerging network with another mature aligned network.
By accommodating the embedding between the aligned networks, information can be transferred from
the aligned mature network to refine the embedding result in the emerging network effectively. The
complete architecture of DIME is shown in Fig. 11.5, which involves the DIME-SH components
for each of the aligned networks, where the information transfer component aligns these separated
DIME-SH models together.

To be more specific, given a pair of aligned heterogeneous networks G = ((G(1),G(2)),A(1,2))

(G(1) is an emerging network andG(2) is a mature network), we can represent the embedding results as
matricesZ(1) ∈ R|U (1)|×d(1) andZ(2) ∈ R|U (2)|×d(2) for all the user nodes inG(1) andG(2), respectively.
The ith row of matrix Z(1) (or the j th row of matrix Z(2)) denotes the encoded feature vector of user
u
(1)
i in G(1) (or u(2)j in G(2)). If u(1)i and u

(2)
j are the same user, i.e., (u(1)i , u

(2)
j ) ∈ A(1,2), by placing
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vectors Z(1)(i, :) and Z(2)(j, :) in a close region in the embedding space, we can use the information
from G(2) to refine the embedding result in G(1).

Information transfer is achieved based on the anchor links, and we only care about the anchor
users. To adjust the rows of matrices Z(1) and Z(2) to remove non-anchor users and make the same
rows correspond to the same user, we introduce the binary inter-network transitional matrix T(1,2) ∈
R|U (1)|×|U (2)|. Entry T (1,2)(i, j) = 1 if the corresponding users are connected by anchor links, i.e.,(
u
(1)
i , u

(2)
j

)
∈ A(1,2). Furthermore, the encoded feature vectors for users in these two networks can

be of different dimensions, i.e., d(1) *= d(2), which can be accommodated via the projection W(1,2) ∈
Rd(1)×d(2) .

Formally, the introduced information fusion loss between networks G(1) and G(2) can be
represented as

L(1,2) =
∥∥∥(T(1,2))'Z(1)W(1,2) − Z(2)

∥∥∥
2

F
. (11.61)

By minimizing the information fusion loss function L(1,2), we can use the anchor users’ embedding
vectors from the mature network G(2) to adjust his embedding vectors in the emerging network G(1).
Even though in such a process the embedding vector in G(2) can be undermined by G(1), it will not
be a problem since G(1) is our target network and we only care about the embedding result of the
emerging network G(1).

The complete objective function of framework includes the loss terms introduced by the component
DIME-SH for networks G(1), G(2), and the information fusion loss, which can be denoted as

L(G(1),G(2)) = L(1) + L(2) + α · L(1,2) + β · Lreg. (11.62)

Parameters α and β denote the weights of the information fusion loss term and the regularization
term. In the objective function, term Lreg is added to the above objective function to avoid overfitting,
which can be formally represented as






Lreg = L(1)
reg + L(2)

reg + L(1,2)
reg ,

L(1)
reg =∑o(1)+2

i

∑
Φk∈{Φ0,...,Φ7}

(∥∥∥W(1),i
Φk

∥∥∥
2

F
+
∥∥∥Ŵ(1),i

Φk

∥∥∥
2

F

)
,

L(2)
reg =∑o(2)+2

i

∑
Φk∈{Φ0,...,Φ7}

(∥∥∥W(2),i
Φk

∥∥∥
2

F
+
∥∥∥Ŵ(2),i

Φk

∥∥∥
2

F

)
,

L(1,2)
reg =

∥∥W(1,2)
∥∥2
2 .

(11.63)

To optimize the above objective function, we utilize stochastic gradient descent (SGD). To be more
specific, the training process involves multiple epochs. In each epoch, the training data is shuffled and
a minibatch of the instances is sampled to update the parameters with SGD. Such a process continues
until either convergence or the training epochs have been finished.

11.6 Summary

In this chapter, we introduced the network embedding problems, whose objective is to learn a
low-dimensional feature representation of nodes in the network structured data. Meanwhile, in the
embedding process, the network structure can be preserved at the same time, and the complete network
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structure can be recovered from the embedding results. With the embedding feature representations,
traditional machine learning algorithms can be applied to deal with the network data directly.

We introduced 3 different translation based network embedding algorithms, which treat the relation
as a translation among the entities. Assuming that entities and relations can be embedded into the same
feature space, TransE learns the embeddings of entities and relations as an optimization problem.
TransH models relations as a hyperplane together with a translation operation on it, where the
correlation among the entities can be effectively preserved. TransR models the entities and relations
in distinct spaces, projection between which can be achieved with a linear mapping function.

We also introduced 3 network embedding models for the homogeneous networks specifically.
DeepWalk proposes to sample node sequences from the network structured data, from which the
Skip-Gram model can be applied to learn the embedding feature representations. LINE computes
both the first-order proximity and second-order proximity among nodes in the networks. By projecting
similar nodes into closer regions, LINE is able to learn the embedding representations of the nodes in
homogeneous networks. node2vec also adopts the Skip-Gram model to learn the node representations
based node sequences sampled from the network data based on a random walk, where the sampled
sequences can be adjusted by controlling two parameters in the random walk model.

To learn the node representations in heterogeneous networks, 3 different embedding models
were introduced in this chapter. HNE learns the representations of images and texts based on a
heterogeneous network involving images and texts, as well as the diverse connections among them.
The path-augmented heterogeneous network embedding model learns the node representations based
on node sequences generated by the meta paths. HEBE learns the node representations by considering
their roles in different events.

Finally, at the end of this chapter, we introduced a network embedding model DIME across multiple
aligned heterogeneous networks, where one of the network is an emerging network lacking enough
information for effective representation learning. DIME is built based on the autoencoder model,
which projects and fuses the node adjacency vectors achieved based on diverse meta paths into a
shared low-dimensional space. DIME accommodates the representations of the shared anchor nodes
with a network fusion component.

11.7 Bibliography Notes

A comprehensive survey about the network embedding problems and algorithms is provided in [4,17,
22]. For the readers who are interested in the translation based embedding models for multi-relational
networks, please refer to articles TransE [1], TransH [16], and TransR [8] for more information.

The homogeneous network embedding models introduced in this chapter are all based on the
recent research papers, including DeepWalk [11], LINE [14], and node2vec [6]. Meanwhile, the
heterogeneous network embedding works are based on the articles HNE [2], PANE [3], and HEBE [7],
respectively. The community has actually maintained a GitHub page for the recent network embedding
articles, and the readers can access the page via link.1 Many of these proposed embedding models are
actually based on the Skip-Gram model [10], which was initially proposed for the representation
learning in text data. Besides the Skip-Gram model, continuous bag-of-words is also frequently used
for text representation learning, and the readers may refer to [9] for more information.

The emerging network embedding model is based on the latest embedding paper [21]. For the
readers who are interested in the autoencoder model used in the algorithm, please refer to [15] for
more information. A comprehensive review of deep learning models is provided in [5]. The emerging

1https://github.com/chihming/awesome-network-embedding.
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network concept is initially proposed in [18], which actually describes the scenario where the networks
are suffering from the new network problem [19,20].

11.8 Exercises

1. (Easy) To train the TransE model, besides the positive triple set, a set of negative triples are
sampled from the multi-relational network. Please briefly introduce how TransE samples these
negative triples.

2. (Easy) Please summarize the similarity and differences of the TransE, TransH, and TransR
models.

3. (Easy) Please briefly introduce what are the advantages of adopting the hierarchical softmax to
compute the probabilities in DeepWalk.

4. (Easy) What are the first-order proximity and second-order proximity measures used in the
LINE model? Please provide a brief introduction about these two proximity measures, and their
applications in the LINE model learning.

5. (Medium) Please summarize the differences between DeepWalk and node2vec in both the
embedding model and the node sequence sampling approaches.

6. (Medium) Please briefly introduce the DIME model architecture, and introduce how DIME
transfers information from the mature networks to the emerging networks in the representation
learning process.

7. (Hard) Please implement the TransE, TransH, and TransR models with your preferred program-
ming language, and compare their performance with a toy multi-relational network data set.

8. (Hard) Please implement the DeepWalk, LINE, and node2vec algorithms with your preferred
programming language, and compare their performance with a toy homogeneous network data
set.

9. (Hard) Please implement the HNE, path-augmented network embedding, and HEBE algorithms
with your preferred programming language, and compare their performance with a toy heteroge-
neous network data set.

10. (Hard) Please implement the DIME algorithm, and test its performance on a multiple aligned
heterogeneous network data set.
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