
10Viral Marketing

10.1 Overview

Via the social interactions among users, information of various topics, e.g., personal interests,
products, commercial services, etc. can extensively propagate throughout the networks, where lots
of users can get infected and become activated. Meanwhile, the social information diffusion can
bring about great commercial values, and create lots of viral marketing [29] opportunities. Lots of
commercial companies are utilizing the information diffusion phenomenon in online social networks
to promote their products or services. For instance, Apple and Huawei have been promoting their
latest cell phones via Facebook and Twitter. They can provide some free cell phone samples, coupons,
or even cash to certain users (with lots of followers) in Facebook, and ask them to post some good
review comments or advertising photos about the cell phone. Such information will propagate to their
friends and followers, who may get activated to purchase the cell phone. Commercial promotions
via the online social networks have become more and more important in recent years, which even
surpass the traditional print media (like newspaper, magazine, TV, and radio). At the same time, viral
marketing has also become one of the most important and secure revenue sources for many online
social platforms, like Facebook and Twitter.

To achieve the maximum influence in the online social networks, the commercial companies may
need to carry out serious investigations to select the initial user set for information spread. Formally,
these information diffusion initiators are called the seed users in the existing research works [29]. The
problem of selecting the optimal set of seed users is called the influence maximization problem [29,36]
(or the viral marketing problem). Furthermore, in commercial promotion campaigns, besides releasing
their own advertisements, the competitors may release lots of fake news [52] (i.e., rumors [28, 46])
about the other competing products to cheat the consumers. Identification of these rumor initiators in
the online social networks timely can avoid the negative impacts on the marketing activities greatly.

In this chapter, we will study the seed user and rumor initiators identification problems in viral
marketing, which are all the crucial problems for designing the optimal marketing strategies for
companies in carrying out their promotion campaigns. The problems to be studied in this chapter
are mostly based on the information diffusion models introduced in the previous chapter.

In Sect. 10.2, we will first introduce the formulation of the influence maximization problem
[29], and introduce several existing seed user selection strategies based on either approximation or
heuristics [11, 22, 23, 29]. In Sect. 10.3, we will introduce the intertwined influence maximization
problem [50] for the seed user selection in promoting multiple products with intertwined relationships.
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By considering the information diffusion across networks, the cross-network influence maximization
and seed user selection strategies [47,48] will be introduced in Sect. 10.4. To effectively and efficiently
detect the rumor initiators [51], a new rumor initiator detection algorithm [51] is to be introduced
in Sect. 10.5, which is introduced based on the signed network setting but can be applied to other
networks as well.

10.2 Traditional InfluenceMaximization

The influence maximization problem first proposed in [29] has been studied for several years, and
dozens of algorithms have been introduced to select the optimal marketing strategies for the problem.
In the influence maximization problem, the marketing strategy usually refers to the set of seed users
selected by the companies involved in the promotion campaign. In this section, we will introduce
the traditional influence maximization problem, and provide a brief review of the existing seed user
selection algorithms proposed for the problem.

10.2.1 InfluenceMaximization Problem

The influence maximization problem is one of the most fundamental research problems, which studies
the word-of-mouth effects on promoting new products and making profitable services. Assuming
the information diffusion model has been provided, the influence maximization problem aims at
identifying the optimal marketing strategy (i.e., the seed users), who can lead to the maximal influence
in the social networks.

Definition 10.1 (Influence Maximization) Given a network structure G = (V, E), where V denotes
the users and E denotes the relationships among them. The influence maximization problem aims
at selecting a set of seed users S ⊂ V , who can lead to the maximal influence inside the network.
Generally, the size of the seed user set is limited by some budget, e.g., |S| ≤ k.

In the influence maximization problem, the diffusion model is not the focus, which will be provided
as black-box taking the initial seed users as the input and producing the influence number as the output.
To quantify the impact achieved by a diffusion model, we can introduce the influence function [29]
here, which projects the initial seed users to the influence (i.e., the number of infected users).

Definition 10.2 (Influence Function) Let S ⊂ V denote the set of seed users who will initiate
the influence propagation. Given a diffusion model M , the influence function can be represented as
σM : S → R, which projects the seed user set S to the expected number of infected users after the
diffusion process stops. With an input seed user set S , based on the provided diffusion model M , the
number of users who can be infected by these seed users can be represented as σM(S).

With the influence function defined above, the influence maximization problem can be formally
defined as the following optimization problem:

max
S⊂V

σM(S)

s.t.|S| ≤ k. (10.1)
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Depending on the specific representation of the influence function σM(·), the above optimization
function can have different varying degrees of difficulty. In most cases, based on the diffusion models,
like LT and IC [29], introduced in the previous chapter, solving the objective function may need to
enumerate all the potential combination of the seed user set, which renders the problem to be NP-hard.

Generally, by selecting more users to initiate the promotion campaign, the diffusion model will
achieve a larger influence and can infect more people. For some diffusion models, the influence
function usually has the monotonicity property. Meanwhile, the total number of users in the social
network is limited, and the influence cannot keep increasing as the seed user set size increases.
As more users are selected as the seed user, the influence gain obtained by involving these extra
seed users will degrade steadily. For some diffusion models, the influence function normally follows
the marginal decline, and has the submodularity property. These two properties about the influence
function are very important for the influence maximization problem, which serve as the foundations
for many approximation solutions to the problem.

Definition 10.3 (Monotonicity) Given an influence function σM(S) based on the diffusion model
M , the function has the monotonicity property iff σM(S) < σM(S ′) holds for any S ⊂ S ′ ⊂ V .

Definition 10.4 (Submodularity) Given an influence function σM(S) based on the diffusion model
M , the function has the submodularity property iff σM(S ∪ {u})− σM(S) ≥ σM(S ′ ∪ {u})− σM(S ′),
for all user u ∈ V , u /∈ S , u /∈ S ′ and S ⊂ S ′ ⊂ V .

Currently, most of the existing algorithms proposed for the influence maximization problem are
based on either approximation algorithms or heuristics. In the following subsections, we will introduce
some representative algorithms belonging to these two categories.

10.2.2 Approximated Seed User Selection

Based on many of the diffusion models, like LT or IC, the influence maximization problem is NP-
hard to solve. In the case when the influence function is both monotone and submodular, according
to the existing works [29], algorithms applying greedy strategy can achieve (1− 1

e )-approximation of
the optimal result. In this section, we will introduce several approximation-based seed user selection
algorithms, which include greedy [29] and CELF [11] algorithms.

10.2.2.1 Greedy Algorithm
Based on the classic diffusion models M , like LT and IC models introduced in Sects. 9.2.1.1
and 9.2.2.1, respectively, the influence maximization problem is shown to be NP-hard [29]. Given
the objective seed user set size k and the diffusion model, the influence maximization problem aims
at identifying the optimal seed users of size k who can lead to the maximal influence inside the
social network. Let S denote the set of selected seed users, the influence obtained by these seed users
can be represented by the influence function σM(S). Generally, the value of σM(S) can be obtained
by running the diffusion model M on the selected seed user set S . Based on the LT and IC diffusion
models, the influence function has both themonotonicity and submodularity properties, and the greedy
algorithm can achieve a constant approximation ratio.
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Algorithm 1 Greedy algorithm
Require: Input network G with user node set V

Influence function σM(·)
Seed use set size k

Ensure: Seed user set S
1: initialize S = ∅
2: while |S| ≤ k do
3: u∗ = argmaxu∈V\S σM(S ∪ {u}) − σM(S)
4: S = S ∪ {u}
5: end while
6: Return S

In the greedy algorithm, the k seed users are selected in k rounds, and the user who can lead to the
maximum marginal influence gain (of the influence function σM(S)) will be selected in each of the
rounds as the seed user. For instance,

• Round 1: In round 1, the original seed user set S(0) is initialized as an empty set, i.e., S(0) = ∅,
which can achieve 0 influence, σM(S(0)) = 0. The greedy algorithm will enumerate all the users in
the social network greedily. User u will be selected if σM(S(0) ∪ {u}) ≥ σM(S(0) ∪ {v}),∀v ∈ V,
u ,= v. The time cost of round 1 will be O (|V|(|V| + |E |)), where O(|V| + |E |) denotes the time
cost in diffusing the information throughout the network.

• Round i: In round i (i > 1), the seed user set obtained from the last round can be represented as set
S(i−1), and the greedy algorithm will enumerate all the remaining users in the social network
and add them to the seed user set. The optimal seed user to be selected in this round can be
represented as u = argmaxu∈V\S(i−1) σM(S(i−1) ∪ {u}) − σM(S(i−1)). The time cost of round
i will be O ((|V| − (i − 1))(|V| + |E |)).

Such an iteratively process continues until the required k seed users have been selected, and these
selected seed user sets can be formally represented as S . The pseudo-code of the greedy algorithm
is available in Algorithm 1. Formally, let S∗ denote the optimal seed user solution to the influence
maximization problem, and Sg represent the seed user set selected by the greedy algorithm. According
to the existing works [29], the approximation ratio of the performance achieved by the greedy
algorithm is shown to be

σM(Sg)

σM(S∗)
≥ 1 − 1

e
. (10.2)

Actually, the exact computation complexity of σM(S) is left as an open problem [11], in the context
of influence maximization. Later on, Chen et al. [11] demonstrate that the exact computation of σM(S)
is actually #-hard. According to the step-wise analysis of the greedy algorithm, the running time of the
algorithm at the worst case will be O

(
|V|2(|V| + |E |)

)
, which renders the greedy algorithm hardly

applicable to large-scale social network data sets.

10.2.2.2 CELF
Due to the submodularity property of the influence function σM(·), given two seed user sets S(i)

and S(i+1) in rounds i and i + 1, the influence gain introduced by adding user u (where u ∈ V,
u /∈ S(i), u /∈ S(i+1)) to S(i+1) will not surpass the introduced influence gain by adding user u to S(i).
Such a property can be utilized in the seed user selection. For instance, assuming there are two seed
user candidates u and v, if the influence gain introduced by u in the current round is greater than the
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influence gain obtained by v in the previous round, then v will not be selected definitely in the current
round. Therefore, based on such an intuition, when choosing the seed users in each round, we don’t
need to enumerate all the remaining users to identify the one achieving the maximum influence gain.
It is also the basic idea of the “cost-effective lazy forward” (CELF) algorithm [11] to be introduced
here.

In theCELF algorithm, a heap data structure is maintained, where the node achieving the maximum
influence gain is placed at the root. Formally, in the heap, the tree node is represented as a triple
(u,∆(S, u), r), where u ∈ V \S represents the id of the remaining nodes, ∆(S, u) = σM(S ∪ {u})−
σM(S) denotes the influence gain by adding u to the current seed user set S , and r denotes the most
recent round updating the triple. In each round, the CELF algorithm will pick some node triples form
the heap to update, and select the optimal one which can introduce the maximum influence gain.

• Round 1: In round 1, CELF algorithm constructs the heap data structure involving all the nodes
in the network based on the calculated influence introduced by them. For all the use node, we can
represent the triples as set {(u, σM({u}), 1)}u∈V , which will be used to construct the heap H .

• Round i: In round i (i > 1), CELF algorithm keeps picking the node triple from the root of the
heap, updating the influence gain and round number of the node triple, reinserting the node back to
the heap. Such a process continues until the node at the root is the current round number i (i.e., we
have just updated it, and it still achieves the maximum influence gain among the remaining nodes),
which will be deleted from the heap and added to the seed user set.

The pseudo-code of the CELF algorithm is available in Algorithm 2, which is shown to be over
700 times faster than the greedy algorithm in identifying the same seed user set [11]. Besides the
greedy and CELF algorithms, many other approximation-based seed user identification algorithms
have been proposed, which further optimize the greedy algorithm to lower down the time complexity,
like CELF++ [22], SIMPATH [23]. If the readers are interested in these algorithms, please refer to
these reference papers for more detailed information.

Algorithm 2 CELF algorithm
Require: Input network G with user node set V

Influence function σM(·)
Seed use set size k

Ensure: Seed user set S
1: initialize S = ∅, heap H = ∅
2: for each u ∈ V do
3: calculate the influence gain measure gain=σM({u})
4: add tuple (u, gain, 1) to the heap in decreasing order of influence gain measure
5: end for
6: while |S| < k do
7: pick node tuple (u, gain, r) from the heap root
8: if r == |S| + 1 then
9: S = S ∪ {u}
10: delete node tuple (u, gain, r) from the heap H
11: else
12: delete node tuple (u, gain, r) from the heap H
13: update gain=σM(S ∪ {u}) − σM(S)
14: update r = |S| + 1
15: insert node tuple (u, gain, r) back to the heap H
16: end if
17: end while
18: Return S
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10.2.3 Heuristics-Based Seed User Selection

The algorithms introduced in the previous parts are mostly based on the greedy seed user selection
strategy, and are not scalable to large-scale networks. Even though some speed-up techniques have
been proposed, e.g., CELF, the time complexity of these algorithms can still be very high. In this part,
we will introduce a number of seed user selection algorithms based on heuristics, which can select the
promising seed users with a much faster speed.

10.2.3.1 Centrality Heuristics
In our daily life, the important users (e.g., the famous celebrities) can usually have much more
influence in disseminating information. In the real-world online social networks, the posts from
famous people (e.g., celebrities, politician, and movie stars) can always influence more people, and
people tend to follow them. Viewed in such a perspective, when selecting the seed users, selecting the
nodes with large centrality [5] measures will be a good choice. As introduced in Sect. 3.3.2, the node
centrality score can be defined based on different kinds of metrics, like node degree [1] and PageRank
score [8].

For the user nodes with larger degrees, there will exist more neighbors that these nodes can spread
their influence to, as introduced in the LT and IC model. Lots of commercial brands tend to invite
them to help share some advertising posts and photos to promote products, as they can infect more
people in the network. Viewed in such a perspective, choosing the nodes with large degrees is a good
way for selecting the seed users.

However, when calculating the weight among users in LT and IC models, if we apply the Jaccard’s
coefficient [26] as the weight measure of social links among users, the weight of links incident to the
large-degree nodes will be small since their degrees will penalize the diffusion weight greatly. In other
words, selecting the nodes merely based on the node degree may have some problems. Therefore,
some other works propose to apply PageRank score to select the seed users, where users with larger
PageRank scores [8] tend to be selected in advance. Another method proposed for the networks with
small diffusion weights is the degree discount [11] heuristics to be introduced in the following part.

Besides the diffusion models have introduced in Chap. 9, there also exist many other diffusion
models, like the path-based models. In the shortest path (SP) model proposed in [30], the nodes are
activated through the shortest path form the initial seed user set. Based on these diffusion models,
some other types of heuristics have been applied, like distance-based centrality. Nodes can be sorted
according to the average distance from them to all the other nodes in the network, where those with
smaller average distances will be picked as the seed user nodes.

10.2.3.2 Degree Discount Heuristics
Both the node degree and PageRank score-based heuristics work very well in the experimental
simulations, and they can achieve much larger influence than the other heuristics. However, the
influence obtained by them is still much smaller than the greedy algorithm. Furthermore, for the nodes
with large degrees, the influence they can send out to their neighbors will be relatively small and can
hardly activate their neighbors. To resolve such a problem, some works propose to further improve
the pure degree-based heuristics, and introduce the degree discount method [11].

Let v be a neighbor of user node u in the network. If u has been selected as a seed user, when
considering adding node v as a new seed user based on his/her degree, we should not count seed user
u as his neighbor towards the degree. Since u has been added to the seed user set already, node v’
degree should be discounted by 1 for u, and similarly for the other neighbors who have been selected
as the seed nodes. Such a heuristic is applicable to all the diffusion model introduced before.
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Algorithm 3 Degree discount heuristics
Require: Input network G with user node set V

Seed use set size k
Diffusion weight w

Ensure: Seed user set S
1: initialize S = ∅
2: for each node u ∈ V do
3: compute degree D(u) = |Γ (u)|
4: initialize discounted degree DD(u) = D(u)
5: initialize T (u) = 0
6: end for
7: while |S| < k do
8: select u∗ = argmaxu∈V\S DD(u)
9: S = S ∪ {u}
10: for neighbor v ∈ Γ (u) \ S do
11: T (v) = T (v)+ 1
12: DD(v) = 1+ (D(v) − 2T (v) − (D(v) − T (v))T (v)p)p.
13: end for
14: end while
15: Return S

Specifically, for the IC model with a relatively small diffusion weight w → 0, a more accurate
degree discount heuristic has been proposed in [11]. In the IC mode, user u will activate his/her
neighbor v with a probability w. If user u has been selected into the seed user set and u can activate
v, then we don’t need to further add v into the seed user set. In the case that w is small, the two-hop
diffusion can be ignored, and the degree discount is applied to a local subgraph.

Let v be a user who has not been selected as the seed user yet, we can represent the his/her neighbor
as set Γ (v). The number of v’s neighbors who have been selected as the seed user can be represented
as T (v), while the original degree of node v is D(v) = |Γ (v)|. The expected number of additional
nodes in Γ (v) to be infected by adding v into the seed user set can be approximately represented as
v’s discounted degree

DD(v) = 1+ (D(v) − 2T (v) − (D(v) − T (v))T (v)p) · p. (10.3)

where p denotes the activation probability between users. For all the nodes in the network, the degree
discount method will pick the seed users with larger discounted degree iteratively. The pseudo-code
of the degree discount method is available in Algorithm 3.

10.3 Intertwined InfluenceMaximization

Besides the traditional influence maximization problems about one single product studied based on
the online social networks, in the real scenarios, the promotions of multiple products can co-exist
in the social networks at the same time. The relationships among the products to be promoted in
the network can be very complicated. In this section, we want to maximize the influence of one
specific product that we target on in online social networks, where many other products are being
promoted simultaneously. The relationships among these product can be obtained in advance via
effective market research, which can be independent, competitive, or complementary as introduced in
Sect. 9.3. Formally, we define this problem as the interTwined Influence Maximization (TIM) problem
[50].
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More specifically, depending on the promotional order of other products and the target product,
the TIM problem can have two different variants (we don’t care about the case that other products are
promoted after the target product):

• C-TIM problem: In some cases, the other products have been promoted ahead of the target products,
where their selected seed users are known and product information has already been propagated
within the network. In such a case, the variant of TIM is defined as the Conditional interTwined
Influence Maximization (C-TIM) problem.

• J-TIM problem: However, in some other cases, the promotion activities of multiple products occur
simultaneously, where the marketing strategies of all these products are confidential to each other.
Such a variant of TIM is defined as the Joint interTwined Influence Maximization (J-TIM) problem.

To solve the above two sub-problems, in this section, we will introduce a unified greedy framework
interTwined Influence EstimatoR (TIER) proposed in [50]. The TIER method also has two variants:
(1) C-TIER (Conditional TIER) for the C-TIM problem, and (2) J-TIER (Joint TIER) for the J-TIM

problem. TIER is based on the diffusion model TLT [50] introduced in Sect. 9.3, which quantifies
the impacts among products with the intertwined threshold updating strategy and can handle the
intertwined diffusion of these products at the same time. To solve the C-TIM problem, C-TIER will
select seed users greedily and is proved to achieve a (1 − 1

e )-approximation to the optimal result.
For the J-TIM problem, we show that the theoretical influence of upper and lower bounds calculation
is NP-hard. Alternatively, we formulate the J-TIM problem as a game among different products and
propose to infer the potential marketing strategies of other products. The step-wise greedy method
J-TIER can achieve promising results by selecting seed users wisely according to the inferred
marketing strategies of other products.

10.3.1 Conditional TIM

Formally, we can represent the online social network asG = (V, E), where V is the set of users and E
contains the interactions among users in V . The set of n different products to be promoted in network
G can be represented as P = {p1, p2, . . . , pn}. For a given product pj ∈ P , users who are influenced
to buy pj are defined to be “active” to pj , while the remaining users who have not bought pj are
defined to be “inactive” to pj . User ui’s status towards all the products in P can be represented as
“user status vector” si = (s1i , s

2
i , . . . , s

n
i ), where s

j
i is ui’s status to product pj . Users can be activated

by multiple products at the same time (even competing products), i.e., multiple entries in status vector
si can be “active” concurrently.

In traditional single-product viral marketing problems, the selected seed users will propagate the
influence of the target product in the network and the number of users getting activated can be obtained
with the influence function σ : S → R, which maps the selected seed users to the number of
influenced users. Traditional one single-product viral marketing problem aims at selecting the optimal
seed users S̄ for the target product, who can achieve the maximum influence:

S̄ = argS max σ (S). (10.4)

However, in the TIM problem, promotions of multiple products in P co-exist simultaneously. The
influence function of the target product pj ∈ P depends on not only the seed user set Sj selected
for itself but also the seed users of other products in P \ {pj }. In the case that the other products
are promoted ahead of the target product, we formally define the TIM problem as the conditional
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intertwined influence function C-TIER problem and the corresponding influence function is called the
conditional intertwined influence maximization function.

Definition 10.5 (Conditional Intertwined Influence Function) Formally, let the notation S−j =
(S1, . . . ,Sj−1,Sj+1, . . . ,Sn) be the known seed user sets selected for all products in P \ {pj }, the
influence function of the target product pj given the known seed user sets S−j is defined as the
conditional intertwined influence function: σ (Sj |S−j ).

C-TIM Problem: C-TIM problem aims at selecting the optimal marketing strategy S̄j to maximize
the conditional intertwined influence function of pj in the network, i.e.,

S̄j = argSj max σ (Sj |S−j ). (10.5)

10.3.1.1 Conditional TIM Problem Analysis
In the C-TIM problem, the promotion activities of other products have been done before we start to
promote our target product. Subject to the TLT diffusion model, users’ thresholds to the target product
can be updated with the threshold updating strategy after the promotions of other products. Based on
the updated network, the C-TIM can be mapped to the tradition single-product viral marketing, which
has been proved to be NP-hard already.

Theorem 10.1 The C-TIM problem is NP-hard based on the TLT diffusion model.

The proof of Theorem 10.1 is omitted and will be left as an exercise for the readers. Meanwhile,
based on the TLT diffusion model, the conditional influence function of the target product σ (Sj |S−j )

is observed to be both monotone and submodular.

Theorem 10.2 For the TLT diffusion model, the conditional influence function is monotone and
submodular.

Proof We will prove the theorem from two perspectives:

(1) monotone: Given the existing seed user sets S−j for existing products P − {pj } in the market,
let T be a seed user set of product pj . Users in the network who are not involved in T can be
represented as V − T . For the given seed user set T and the fixed seed users set S−j of other
products, adding a new seed user, e.g., u ∈ V − T , to the seed user set T will not decrease the
number of influenced users, i.e., σ (T ∪ {u}|S−j ) ≥ σ (T |S−j ).

(2) submodular: After the diffusion process of the existing products in P − {pj } users the thresholds
towards product pj will be updated. Based on the updated network, for two given seed user
sets R and T , where R ⊆ T ⊆ V , it is easy to show that σ (R ∪ {v}|S−j ) − σ (R|S−j ) ≥
σ (T ∪ {v}|S−j ) − σ (T |S−j ) with the “live-edge path” [29].

10.3.1.2 The C-TIER Algorithm
According to the above analysis, a greedy algorithm C-TIER is proposed to solve the problem C-TIM

in this section, whose pseudo-code is available in Algorithm 4. In C-TIER, we select the user u who
can lead to the maximum increase of the conditional influence function σ (Sj ∪ {u}|S−j ) at each step
as the new seed user. This process repeats until either no potential seed user is available or all the kj

required seed users have been selected. The time complexity of C-TIER isO(kj |V|(|V| + |E |)). Since
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Algorithm 4 The C-TIER algorithm
Require: input social network G = (V,P, E)

target product: pj

known seed user sets of P − {pj }: S−j

conditional influence function of pj : I (Sj |S−j )
seed user set size of pj : kj

Ensure: selected seed user set Sj of size kj

1: initialize seed user set Sj = ∅
2: propagate influence of productsP−{pj }with S−j and update users’ thresholds with intertwined threshold updating

strategy
3: while V \ Sj ,= ∅ ∧

∣∣Sj
∣∣ ,= kj do

4: pick a user u ∈ V − Sj according to equation argmaxu∈V I (Sj ∪ {u}|S−j ) − I (Sj |S−j )
5: Sj = Sj ∪ {u}
6: end while
7: return Sj .

the conditional influence function is monotone and submodular based on the TLT diffusion model,
then the step-wise greedy algorithms C-TIER, which select the users who can lead to the maximum
increase of influence, can achieve a (1− 1

e )-approximation of the optimal result for the target product.

10.3.2 Joint TIM

C-TIM studies a common case in real-world viral marketing, where different companies have different
schedules to promote their products and some can be conducted ahead of the target product.
Meanwhile, in this part, we will study a more challenging case: J-TIM, where other products are being
promoted at the same time as our target product and the marketing strategies of different products are
totally confidential.

Definition 10.6 (Joint Intertwined Influence Function) When the seed user sets of products
P \ {pj } are unknown, i.e., S−j is not given, the influence function of product pj together with
other products in P \ {pj } is defined as the joint intertwined influence function: σ (Sj ;S−j ).

J-TIM Problem: J-TIM problem aims at choosing the optimal marketing strategy S̄j to maximize the
joint intertwined influence function of pj in the network, i.e.,

S̄j = argSj max σ (Sj ;S−j ), (10.6)

where set S−j can take any possible value.

10.3.2.1 Joint TIM Problem Analysis
When the marketing strategies of other products are unknown, the influence function of the target
product and other products co-exist in the network is defined as the joint influence function:
σ (Sj ;S−j ). Meanwhile, by setting S1 = · · · = Sj−1 = Sj+1 = · · · = Sn = ∅, the J-TIM problem
can be mapped to the traditional single-product influence maximization problem in polynomial time,
which is an NP-hard problem.

Theorem 10.3 The J-TIM problem is NP-hard based on the TLT diffusion model.
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Proof We construct an instance of the J-TIM problem by setting S1 = · · · = Sj−1 = Sj+1 = · · · =
Sn = ∅, which will map the J-TIM problem to the traditional single-product influence maximization
problem in polynomial time. Meanwhile, as proved in [29], the traditional single-product influence
maximization problem is NP-hard. As a result, the J-TIM is also a NP-hard problem.

Meanwhile, if all the products in P \ {pj } are independent to pj , the joint influence function
σ (Sj ;S−j ) will be both monotone and submodular.

Theorem 10.4 Based on the TLT diffusion model, the joint influence function is monotone and
submodular if all the other products are independent to pj .

Proof If all the other products are independent to product pj , then the promotion process of all the
other products has no effects on the promotion of pj . According to the threshold updating strategy
in the TLT diffusion model, users’ thresholds to the target product pj will not be affected by all the
remaining products, i.e., the TIM problem identical to the traditional single-product viral marketing
problem. Furthermore, the joint influence function of pj and all the other products will be reduced to
the influence function of product pj in the traditional single-product influence maximization setting:

σ (Sj ;S−j ) → σ (Sj ). (10.7)

Meanwhile, as proved in [29], the influence function of pj in the single-product influence maximiza-
tion setting is both monotone and submodular. As a result, based on the TLT diffusion model, the joint
influence function is monotone and submodular if all the other products are independent to pj .

However, when there exist products in P \ {pj } to be either competing or complementary to pj ,
the joint influence function σ (Sj ;S−j ) will be neither monotone nor submodular.

Theorem 10.5 Based on the TLT diffusion model, the joint influence function is not monotone if there
exist products which are either competing or complementary to the target product pj .

Proof We propose to prove the above Theorem 10.5 with counterexamples shown in Fig. 10.1a, where
we can find one product pi to be either competing or complementary to pj .

Case (1): when competing products exist: as shown in the upper two plots in Fig. 10.1a, we have
four users in the network {A,B,C,D} and we want to select seed users for products pi and pj .
The influence from A to B and C are 0.3 and 0.5, whose original thresholds to the target product
pj are 0.25 and 0.45, respectively. In the example, the seed users selected for two competing
products pj and pi are (1) {A} and {D}, respectively, in competing case 1 at the upper left corner;
and (2) {A,B} and {C} in competing case 2 at the upper right corner. In competing case 1, pj

can influence three users {A,B,C} as the influence from A to B and C can both exceed their
thresholds, i.e., σ (Sj = {A};S i = {D}) = 3. However, in competing case 2, pj can only influence
two users even though the seed use set has been expanded by adding B as a seed user, i.e., σ (Sj =
{A,B};S i = {C}) = 2. The reason is that the competing product pi selects C as the seed user
which increase C’s threshold towards pj from 0.45 to 0.55.
So, we can find a counterexample where {A} ⊂ {A,B} but σ (Sj = {A};S i = {D}) > σ (Sj =
{A,B};S i = {C}), when there exists competing product pi in the network.

Case (2): when complementary products exist: similar counterexamples are shown in the lower two
plots of Fig. 10.1a, which are identical to the upper two plots except that the influence from A to C
for product pj is changed to 0.4 and pi is complementary to pj instead. In complementary case 1,
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Fig. 10.1
Counterexamples of
monotone and submodular
properties.
(a) Counterexamples of
monotone property.
(b) Counterexamples of
submodular property
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pi selects C as the seed user, which can decrease C’s threshold towards pj and pj can achieve a
influence of three by choosing A as the seed user. However, in complementary case 2, pi selects
D as the seed user and pj can only influence two users even though the seed user set has been
expanded by adding B to the set.
So, we can find a counterexample where {A} ⊂ {A,B} but σ (Sj = {A};S i = {C}) > σ (Sj =
{A,B};S i = {D}) when there exists complementary product pi in the network.
As a result, based on the TLT diffusion model, the joint influence function is not monotone if these
exist products which are either competing or complementary to pj .
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Theorem 10.6 For the TLT diffusion model, the joint influence function is not submodular if these
exist products which are either competing or complementary to the target product pj .

Proof We propose to prove Theorem 10.6 with counterexamples shown in Fig. 10.1b, where we can
find one product pi to be either competing or complementary to pj .

Case (1): when competing products exist: Let T = {A} ⊂ S = {A,B} and u = C. In the competing
case 1, T is the seed user set selected by product pj and {D} is selected as the seed user by product
pi , which increase D’s threshold to pj from 0.45 to 0.55. As a result, pj can only influence two
users ({A,B}) when using T as the seed user set and influence three users ({A,B,C}) when using
T ∪ {u} as the seed user set. However, in the competing case 2, where pi selects C as the seed user,
pj can activate two users ({A,B}) when using S as the seed user set but can activate four users
({A,B,C,D}) when using S ∪ {u} as the seed user set.
So, we can find a counterexample where T = {A} ⊂ S = {A,B} and u = C, but σ (Sj = T ∪
{u};S i = {D})− σ (Sj = T ;S i = {D}) < σ (Sj = S ∪ {u};S i = {C})− σ (Sj = S;S i = {C}).

Case (2): when complementary products exist: similar counterexample is shown in the lower two
plots of Fig. 10.1b, where pi is complementary to pi . We can also find a counterexample where
T = {A} ⊂ S = {A,B} and u = C, and σ (Sj = T ∪ {u},S i = {C})− σ (Sj = T ,S i = {D}) <
σ (Sj = S ∪ {u},S i = {C}) − σ (Sj = S,S i = {D}).
As a result, for the TLT diffusion model, the joint influence function is not submodular if these
exist products which are either competing or complementary to pj .

When all the other products are independent to pj , the joint influence function of pj will be
monotone and submodular, which is solvable with the traditional greedy algorithm proposed [29]
and can achieve a (1 − 1

e )-approximation of the optimal results. However, when there exists at least
one product which is either competing or complementary to pj , the joint influence function will be no
longer monotone or submodular. In such a case, the J-TIM will be very hard to solve and no promising
optimality bounds of the results are available.

By borrowing ideas from the game theory studies [6, 40], for product pj , the lower bound and
upper bound of influence the J-TIM problem can be achieved by selecting seed users of size k can be
represented as

max
Sj

min
S−j

σ (Sj ;S−j ), max
Sj

max
S−j

σ (Sj ;S−j ) (10.8)

respectively, which denotes the maximum influence pj can achieve in the worst (and the best) cases
where all the remaining products work together to make pj ’s influence as low (and high) as possible.
The seed user set selected by pj when achieving the lower bound and upper bound of influence can
be represented as

Ŝj
low = argmax

Sj
min
S−j

σ (Sj ;S−j ), Ŝj
up = argmax

Sj
max
S−j

σ (Sj ;S−j ). (10.9)

However, the lower and upper bounds of the optimal results of the J-TIM problem are hard to
calculate mathematically.

Theorem 10.7 Computing the Max-Min for three or more player games is NP-hard.
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Proof As proposed in [6], the problem of finding any (approximate) Nash equilibrium for a three-
player game is computationally intractable and it is NP-hard to approximate the min-max payoff
value for each of the player [6, 9, 10, 16].

10.3.2.2 The J-TIER Algorithm
In addition, in the real world, the other products will not co-operate together in designing their
marketing strategies to create the worst or the best situations for the target product pj , i.e., choosing
the marketing strategies S−j such that the joint influence function σ (Sj ;S−j ) is minimized or
maximized. To address the J-TIM problem, in this part, we propose the J-TIER algorithm to simulate
the intertwined round-wise greedy seed user selection process of all the products.

In J-TIER, all products are assumed to be selfish and want to maximize their own influence when
selecting seed users based on the “current” situation created by all the products. J-TIER will infer the
next potential marketing strategies of other products round by round and select the optimal seed users
for each product based on the inference.

In algorithm J-TIER, we let all products in P choose their optimal seed users randomly at each
round. For example, let (S)τ−1 be the seed users selected by products in P at round τ − 1. At round
τ , a random product pi can select one seed user. To achieve the largest influence, product pi will
infer the next potential seed users to be selected by other products based on the assumption that they
are all selfish. For example, based on pi’s inference, the next seed user to be selected by pj can be
represented as ūj , i.e.,

arg max
u∈V−(Sj )τ−1

[I ((Sj )τ−1 ∪ {u}; (S−j )τ−1) − I ((Sj )τ−1; (S−j )τ−1)]. (10.10)

Similarly, pi can further infer the potential seed users to be selected next by products in
P \ {pi, pj }, and these selected seed users can be represented as a set{ū1, ū2, . . . , ūi−1, ūi+1, . . . ,

ūj−1, ūj+1, . . . , ūn}, respectively. Based on such inference, pi knows who are the next seed users to
be selected by other products and will make use of the “prior knowledge” to select its own seed user
ûi in round τ :

ûi = arg max
u∈V−(S i )τ−1

[I ((S i )τ−1 ∪ {u}; S̄−i ) − I ((S i )τ−1; S̄−i )]. (10.11)

where S̄−i is the “inferred” seed user sets of other products inferred by pi based on current situation
by “adding” these inferred potential seed users to their seed user sets.

The selected (ûi)τ will be added to the seed user set of product pi , i.e.,

(S i )τ = (S i )τ−1 ∪ {(ûi)τ }. (10.12)

And the “current” seed user sets of all the products, i.e., S , are updated as follows:

S = ((S1)τ , (S2)τ−1, . . . , (Sn)τ−1). (10.13)

The selected (ûi)τ will propagate his influence in the network and all the users just activated to
product pi will update their thresholds to other products in P \ {pi}.

Next, we let another random product (which has not selected seed users yet) to infer the next seed
users to be selected by other products and choose its seed user based on the inferred situation. In
each round, each product will have a chance to select one seed user and the user selection order of
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Algorithm 5 The J-TIER algorithm
Require: input social network G = (V,P, E)

target product: pj

set of other products: P − {pj }
joint influence function of pj : I (Sj ;S−j )
seed user set size of products in P:k1, k2, . . . , kj , . . . , kn

Ensure: selected seed user sets {S1,S2, . . . ,Sn} of products in P respectively
1: initialize seed user set S1,S2, . . . ,Sn = ∅
2: while (V \ S1 ,= ∅ ∨ · · · ∨ V \ Sn ,= ∅) ∧ (

∣∣S1
∣∣ ,= k1 ∨ · · · ∨ |Sn| ,= kn) do

3: for random i ∈ {1, 2, . . . , n} (pi has not selected seeds in the round yet) do
4: if V \ Si ,= ∅ ∧

∣∣Si
∣∣ ,= ki then

5: pi infers the seed user sets S̄−i of other products
6: pi selects its seed user ui ∈ V − Si , who can maximize I (Si ∪ {ui}; S̄−i ) − I (Si; S̄−i )
7: Si = Si ∪ {ui}
8: propagate influence of u inG and update influenced users’ thresholds to products in P with the intertwined

threshold updating strategy.
9: end if
10: end for
11: end while
12: return S1,S2, . . . ,Sn.

different products in each round is totally random. Such a process will stop when all the products
either have selected the required number of seed users or no users are available to be chosen. With the
J-TIER model, we simulate an alternative seed user selection procedure of multiple products in viral
marketing and the pseudo-code J-TIER method is given in Algorithm 5. The time complexity of the
J-TIER algorithm is O((

∑
i ki · n)|V|(|V| + |E |), where ki = |S i | is the number of seed users to be

selected for product pi .

10.4 Cross-Network InfluenceMaximization

Traditional viral marketing problem aims at selecting the set of seed users to maximize the awareness
of ideas or products merely based on the social connections among users in one single social network
[12, 22, 27]. However, in the real world, social networks usually contain heterogeneous information
[45,49], e.g., various types of nodes and complex links, via which users are extensively connected and
have multiple channels to influence each other [24]. Meanwhile, as studied in [31,49], users nowadays
are also involved in multiple social networks simultaneously to enjoy more social network services.
Via these shared users, information can propagate not only within but also across social networks [39].

Example 10.1 To support such a claim, we investigate a partially aligned network data set (i.e.,
Twitter and Foursquare) and the results are given in Fig. 10.2. In Fig. 10.2a, we randomly sample
a subset of anchor users from Foursquare and observe that 409 out of 500 (i.e., 81.8%) sampled users
have reposted their activities (e.g., tips, location check-ins, etc.) to Twitter. Meanwhile, the activities
reposted by these 409 anchor users only account for a small proportion of their total activities in
Foursquare, as shown in Fig. 10.2b. In other words, these anchor users will repose the information to
other networks selectively.

In this section, we study the influence maximization problem across multiple partially aligned
heterogeneous social networks simultaneously. This is formally defined as the aligned heterogeneous
network influence maximization (ANIM) problem [48]. The ANIM problem studied in this section
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Fig. 10.2 Cross-network
information propagation
analysis. (a) Anchor users’
reposting.
(b) Cross-network reposted
activities

(a) (b)

is very important and has extensive concrete applications in real-world social networks, e.g., cross-
community [3], even cross-platform [39], product promotion [42], and opinion diffusion [13]. Based
on different inter-network information diffusion models introduced in Sect. 9.4, two different seed
user selection algorithms will be introduced in this section for the inter-network information diffusion
scenario, including the greedy seed user selection algorithm [47] and the dynamic programming-based
seed user selection algorithm [48].

10.4.1 Greedy Seed User Selection Across Networks

In this part, a new information diffusion model namedMulti-alignedMulti-relational network (M&M)
[47] will be introduced to address the cross-network seed user selection challenges. M&M first
extracts multi-aligned multi-relational networks with the heterogeneous information across the input
online social networks based on a set of inter- and intra-network social meta paths [45, 49]. M&M
extends the traditional linear threshold (LT) model to depict the information propagation within and
across these multi-aligned multi-relational networks. Based on the extended diffusion model, the
influence function which maps seed user set to the number of activated users is proved to be both
monotone and submodular [47]. Thus the greedy algorithm used in M&M, which selects seed users
greedily at each step, is proved to achieve a (1 − 1

e )-approximation of the optimal result. The M&M
diffusion model to be introduced in this part is very similar to the MUSE diffusion model introduced
in Sect. 9.5, which is also defined based on the meta path concept.

Formally, given two partially aligned networks G(1) and G(2) together with the undirected anchor
link set A between G(1) and G(2), the user sets of G(1) and G(2) can be represented as U (1) and U (2),
respectively. Let σ (·) : S → R,S ⊂ U (1) ∪ U (2) be the influence function, which maps the seed
user set S to the number of users influenced by users in S . The ANIM problem aims at selecting the
optimal set S∗ with size k to maximize the propagation of information across the networks, i.e.,

S∗ = arg max
S⊆U (1)∪U (2)

σ (S). (10.14)

10.4.1.1 Multi-AlignedMulti-Relational Networks Extraction
We utilize the meta paths [45,49] defined based on the network schema to extract multi-aligned multi-
relational networks with the heterogeneous information in aligned networks. In both Foursquare and
Twitter, users can follow other users and check-in at locations, forming two intra-network influence
channels among users. Meanwhile, (1) in Foursquare, users can create/like lists containing a set of
locations; (2) while in Twitter, users can retweet other users’ tweets, both of which will form an
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intra-network influence channel among users in Foursquare and Twitter, respectively. The set of intra-
network social meta paths considered here as well as their physical meanings are listed as follows:

Intra-Network Social Meta Paths in Foursquare

(1) follow: User
f ollow−1

−−−−−→ User,

(2) co-location check-ins: User
check−in−−−−−→ Location

check−in−1

−−−−−−−→ User,

(3) co-location via shared lists: User
create/ like−−−−−−→ List

contain−−−−→ Location
contain−1

−−−−−−→ List
create/ like−1

−−−−−−−−→
User.

Intra-Network Social Meta Paths in Twitter

(1) follow: User
f ollow−1

−−−−−→ User,

(2) co-location check-ins: User
check−in−−−−−→ Location

check−in−1

−−−−−−−→ User,

(3) contact via tweet: User
write−−−→ Tweet

retweet−−−−→ Tweet
write−1

−−−−→ User.

Users can diffuse information across networks via the anchor links formed by anchor users. This
can be abstracted as

inter-network social meta path (1) User
Anchor←−−−→ User.

By taking the inter-network meta paths into account, the studied problem becomes even more
complex due to the fact that anchor users in both networks can also be connected via intra- and inter-
network meta paths. As a result, the number of social meta path instances grows mightily. Each meta
path defines an influence propagation channel among linked users. If linked users u, v are connected
by only intra-network meta path, we say u has intra-network relation to v, otherwise there is an
inter-network relation between them. Based on these relations, we can construct multi-aligned multi-
relational networks for the aligned heterogeneous networks. The formal definition of multi-aligned
multi-relational networks is given as follows.

Definition 10.7 (Multi-Aligned Multi-Relational Networks (MMNs)) For two given heteroge-
neous networks G(1) and G(2), we can define the multi-aligned multi-relational network constructed
based on the above intra- and inter-network social meta paths as G = (U , E,R), where U = U (1)∪U (2)

denotes the set of user nodes in the MMNs G. Set E contains the links among nodes in U and element
e ∈ E can be represented as e = (u, v, r) denoting that there exists at least one link (u, v) of link
type r ∈ R = R(1) ∪ R(2) ∪ {Anchor}, where R(1),R(2), and Anchor denote the intra-network and
inter-network social meta paths defined above.

10.4.1.2 M&MDiffusionModel
In this subsection, we will extend the traditional linear threshold (LT) model to handle the information
diffusion across the multi-aligned multi-relational networks. In the traditional linear threshold (LT)
model, for one single homogeneous network G = (V, E), user ui ∈ V can influence his neighbor
uk ∈ Γin(ui) ⊆ V according to weight wi,k ≥ 0 (wi,k = 0 if ui is inactive), where Γin(ui) represents
the users following ui (i.e., set of users that ui can influence) and

∑
uk∈Γin(ui )

wi,k ≤ 1. Each user,
e.g., ui , is associated with a static threshold θi , which represents the minimal required influence for
ui to become active.
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Meanwhile, based on the MMNs G = (U , E,R), the weight of each pair of users with different
diffusion relations is estimated by PathSim [45]. Formally, the intra-network (inter-network) diffusion
weight between user u and v with relation i(j) is defined as

φi
(u,v) =

2|P i
(u,v)|

|P i
(u,)| + |P i

(,v)|
, ψ

j
(u,v) =

2|Qj
(u,v)|

|Qj
(u,)| + |Qj

(,v)|
, (10.15)

where P i
(u,v)(Q

j
(u,v)) denotes the set of intra-network (inter-network) diffusion meta path instances

starting from u and ending at v with relation i(j). | · | denotes the size of the set. Thus, P i
(u,)(Q

j
(u,))

and P i
(,v)(Q

j
(,v)) means the number of meta path instances with users u, v as the starting and ending

users, respectively.
Based on the traditional LT model, influence propagates in discrete steps in the network. In step t ,

all active users remain active and inactive user can be activated if the received influence exceeds his
threshold. Only activated users at step t can influence their neighbors at step t + 1 and the activation
probability for user v in one network (e.g., G(1)) with intra-network relation i and inter-network
relation j can be represented as g(1),iv (t + 1) and h

(1),j
v (t + 1), respectively:

g(1),iv (t + 1) =
∑

u∈Γin(v,i)
φi
(u,v)I(u, t)∑

u∈Γin(v,i)
φi
(u,v)

, (10.16)

h(1),jv (t + 1) =
∑

u∈Γin(v,j)
φ
j
(u,v)I(u, t)

∑
u∈Γin(v,j)

φ
j
(u,v)

(10.17)

where Γin(v, i),Γin(v, j) are the neighbor sets of user v in relations i and j , respectively and I(u, t)
denotes if user u is activated at timestamp t . Note that anchor user v(1) is activated does not mean that
his/her corresponding account in network G(2), i.e., v(2), will be activated at the same time, but v(2)

will get influence from v(1) via the anchor link.
By aggregating all kinds of intra-network and inter-network relations, we can obtain the integrated

activation probability of v(1) [24]. Here logistic function is used as the aggregation function.

p(1)
v (t + 1) = e

∑
(i) ρ

(1)
i g

(1),i
v (t+1)+∑(j) ω

(1)
j h

(1),j
v (t+1)

1+ e
∑

(i) ρ
(1)
i g

(1),i
v (t+1)+∑(j) ω

(1)
j h

(1),j
v (t+1)

, (10.18)

where ρ
(1)
i and ω

(1)
j denote the weights of each relation in the diffusion process, whose values satisfy

∑
(i) ρ

(1)
i +∑(j) ω

(1)
j = 1, ρ

(1)
i ≥ 0, ω

(1)
j ≥ 0. Similarly, we can get the activation probability of a

user v(2) in G(2).

10.4.1.3 Problem Solution and Algorithm Analysis
Kempe et al. [29] proved that traditional influence maximization problem is an NP-hard for LT
model, where the objective function of influence σ (S) is monotone and submodular. Based on these
properties, the greedy approximation algorithms can achieve an approximation ratio of 1− 1/e. With
the above background knowledge, we will show that the influence maximization problem under the
M&M model is also NP-hard and prove the influence spread function σ (S) is both monotone and
submodular.
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Theorem 10.8 Influence Maximization Problem across Partially Aligned Heterogeneous Social
Networks is NP-hard.

Theorem 10.9 For the M&M model, the influence function σ (S) is monotone and submodular.

The proofs of Theorems 10.8 and 10.9 will be left as an exercise for the readers. Since the influence
function is both monotone and submodular, as well as non-negative, based on the M&M model, step-
wise greedy algorithm introduced in Sect. 10.2.2.1 can be applied to select the seed users who can
lead to the maximum marginal influence increase in each step from both networks G(1) and G(2).
According to the analysis provided before, such a step-wise greedy seed user selection approach can
achieve a (1 − 1

e )-approximation of the optimal result.

10.4.2 Dynamic Programming-Based Seed User Selection

In the real world, selecting users as the seed user may introduce certain costs but the cost can be
different for users in different networks. Normally, the mature online social networks with a large
number of active users may cost more than other smaller-sized online social networks in commercial
promotion. In this part, we will still focus on the influence maximization problem across multiple
aligned social networks. Here, we will introduce another influence maximization method to activate
users in a specific target network only. We propose to select seed users from both the target network
and other aligned source networks subject to certain budget constraint, and these selected users
will propagate information to activate users in the target network via both intra- and inter-network
information diffusion routes.

Formally, letG(t) andG(s) denote the target and source network, respectively, whose involved user
sets can be represented as U (t) and U (s), respectively. We can represent the influence function defined
based on a certain information diffusion model as σ (·), which projects the selected seed user set to
the number of infected users in the target network. According to the random walk based information
diffusion model introduced in Sect. 9.4.2, to calculate the final number of activated users in G(t), we
define a (|U (s)|+|U (t)|)-dimensional constant vector b = [0, 0, . . . , 0, 1, 1, . . . , 1], where the number
of 0 is |U (s)| and the number of 1 is |U (t)|. Thus the influence function of the IPATH model can be
denoted as

σ (Z) = b · h(π∗) = b · h
(
a[I − (1 − a)W]−1 · g(Z)

)
. (10.19)

From the above function, we can achieve the number of users who can be activated by the seed user
set, while the specific user status can be obtained from the status vector π .

The objective function of the influence maximization problem studied in this part can be
represented as

max
S

σ (S)

s.t. S ⊂ U (t) ∪ U (s)

∑

u∈S
cu ≤ b,

(10.20)

where cu denotes the introduced cost in adding u in the seed node set S and b represents the pre-
specified budget.
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To solve the above problem, we will provide a theoretic analysis about it first and then introduce
a new viral marketing method “Influence Maximization algorithm based on Dynamic Programming”
(IMDP) proposed in [48]. In IMDP, the information diffusion process is described by the random
walk-based diffusion model IPATH introduced in Sect. 9.4.2. Furthermore, IMDP employs dynamic
programming to address the problem, and can identify a fully polynomial approximation of the
optimal seed user set.

10.4.2.1 Problem Analysis
This section will analyze the problem based on the IPATH model. We first prove that the studied
problem is NP-hard. To simplify the notations, let D = a[I − (1 − a)W]−1 ∈ R(|U (s)|+|U (t)|)2 (where
a[I − (1 − a)W]−1 ∈ R(|U (s)|+|U (t)|)2 is a term used in the IPATH model as described in Sect. 9.4.2)
and π (0) ∈ {0, 1}(|U (s)|+|U (t)|)2 denote the vector indicating the initially selected seed users from both
of these networks Gt and G(s). For the entries in vector π (0) filled with value 0, the corresponding
users are selected as the seed users.

Theorem 10.10 The problem denoted by Eq. (10.20) is NP-hard.

Proof 0–1 Knapsack Problem, which is NP-hard, can be reduced to the problem in polynomial time.
0–1 Knapsack Problem is a combination optimization problem: Given a set of items, each with mass
wi and value vi , the aim of the problem is to determine the number of copies xi of each kind of item
to include in a collection, where xi is restricted to zero or one, so that the total weight is less than a
given limit and their total value is as large as possible, i.e.,

max
x

n∑

i=1

vixi

s.t.
n∑

i=1

wixi ≤ W and xi ∈ {0, 1}
(10.21)

The above objective function is actually equivalent to Eq. (10.20). The constraint of budget in (10.20)
is equivalent to the weight limit. In the IPATH model, entry D(j, u) is the information that user j
can get when u is the only seed. Thus b · h(D(:, u)) is the number of users activated by u, which is
mapped to the value vi of item i. In the notation, function h(·) denotes the floor function introduced in
the IPATH diffusion model. Hence the 0–1 Knapsack Problem can be reduced to the studied problem
in polynomial time, and the problem is also NP-hard.

According to Theorem 10.10, there is no polynomial algorithm which can give an optimal solution
to the problem, if P,=NP. While the greedy seed user selection algorithm for traditional influence
maximization problem is proved to achieve an approximated optimal solution with a factor (1− 1/e)
[29]. This approximation is achieved when the influence function σ (S) is monotone and submodular.

A function f (·) ismonotone iff f (A) ≤ f (B)whenA ⊆ B. We observe that the influence function
σ (S) is monotone, which means that adding a new seed user, the number of activated users will not
decrease. It is also rational intuitively because all values in the weight matrix W are non-negative,
involving more seed users will increase the activation probability of other users. Formally, we can
prove such a claim as follows.

Theorem 10.11 Based on the IPATH diffusion model, the influence function σ (S) is monotone.
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Proof Given the current seed user set S ⊂ (U (t) ∩ U (s)), by incorporating user u ∈ U (t) ∩ U (s) \ S to
S , we can represent the influence gain as

σ (S ∪ {u}) − σ (S)

= b · h
(
D · π (0) + D · u

)
− b · h

(
D · π (0)

)

= b · h
(
π∗ + u∗)− b · h

(
π∗)

= b ·
(
2π∗ + u∗ + c3 − 2π∗ + c3

)
(10.22)

The binary vector u denotes the new seed user u, where only u[u] = 1, and other values are 0.
According to Eq. (9.33), π∗ = D · π (0) represents the information amount of each user can get at
convergence with initial state π (0). Similarly, u∗ = D · u denotes the information amount of each user
can get at the convergence state merely with the new seed user u.

Since 2x + y3 ≥ 2x3 + 2y3, we can have

σ (S ∪ {u}) − σ (S)

≥b ·
(
2π∗ + c3 + 2u∗3 − 2π∗ + c3

)
= b · 2u∗3

(10.23)

As all elements in both b and u∗ are non-negative, so σ (S + {u}) − σ (S) ≥ 0, i.e., the influence
function σ (S) is monotone.

Meanwhile, a function f (·) is submodular, iff f (A ∪ {a}) − f (A) ≥ f (B ∪ {a}) − f (B) for
∀A ⊆ B. It implies that for a specific seed user, his marginal contribution will be larger when being
added into a smaller seed user set. Meanwhile, we observe that the influence function σ (S) does not
have such a property, and will prove it with a counterexample as follows.

Theorem 10.12 Based on the IPATH diffusion model, the influence function σ (S) is not submodular.

Proof To prove the influence function is not submodular, we need to find a pair of seed sets S1, S2
and user u (u /∈ S1, u /∈ S2), where S1 ⊆ S2 and σ (S1 ∪ {u}) − σ (S1) < σ (S2 ∪ {u}) − σ (S2).

σ (S1 ∪ {u}) − σ (S1) − σ (S2 ∪ {u})+ σ (S2)

= b · h
(
D · π (0)

1 + D · u
)

− b · h
(
D · π (0)

1

)

− b · h
(
D · π (0)

2 + D · u
)
+ b · h

(
D · π (0)

2

)

= b · h
(
π∗
1 + u∗)− b · h

(
π∗
1
)
− b · h

(
π∗
2 + u∗)+ b · h

(
π∗
2
)

= b ·
(
2π∗

1 + u∗ + c3 − 2π∗
1 + c3 − 2π∗

2 + u∗ + c3 + 2π∗
2 + c3

)
(10.24)

We suggest the following counterexample, involving four users {u1, u2, u3, u4}. Let θ = 3
4 , b =

[0, 0, 1, 1], S1 = ∅, S2 = {u1} and u = u2, i.e., π
(0)
1 = [0, 0, 0, 0]4, π

(0)
2 = [1, 0, 0, 0]4 and

u = [0, 1, 0, 0]4. In addition, let the weighted diffusion matrix among these four users be

D =





0 0 0 1
0 0 1 0
1
2

1
2 0 0

1
2

1
2 0 0



 (10.25)
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Thus the convergence state π∗
1 = [0, 0, 0, 0]4, π∗

2 = [0, 0, 1
2 ,

1
2 ]4 and u = [0, 0, 1

2 ,
1
2 ]4. When we

substitute them into (10.24), we can have

σ (S1 ∪ {u}) − σ (S1) − σ (S2 ∪ {u})+ σ (S2)

= b ·
(
[0, 0, 0, 0]4 − [0, 0, 0, 0]4 − [0, 0, 1, 1]4 + [0, 0, 0, 0]4

)

= [0, 0, 1, 1] · [0, 0,−1,−1]4 = −2 (10.26)

Therefore, in such a counterexample, we have σ (S1 ∪ {u}) − σ (S1) − [σ (S2 ∪ {u}) − σ (S2)] < 0.
It shows the influence function σ (S) of the IPATH is not submodular.

Since the influence function is monotone but not submodular, no theoretic performance guarantee
exists for the traditional step-wise greedy seed user selection algorithm [29] any more.

10.4.2.2 The IMDP Optimization Algorithm
In the proof of NP-hardness, we mentioned user u’s contribution is the number of users activated by
u, i.e., pu = b · h(D(:, u)). We propose to adjust the contribution with a factor δ = ε·pmax

n , where
n = |Vs | + |Vt | is the number of all users, pmax = maxu∈(Vs∪Vt ) pu denotes the largest contribution
from all the users. We define p̄u = 2puδ 3, for u = 1, 2, . . . , n. As pmax is the largest contribution, we
cannot get the profit larger than npmax, which denotes the contribution upper bound in the dynamic
programming. Let f (i, ρ), (1 ≤ i ≤ n, 1 ≤ ρ ≤ npmax) be the smallest cost sum, so that a solution
with scaled contribution sum equal to ρ can be obtained by users j = 1, 2, . . . , i. Thus, f (i, p) can
be represented as

f (i, ρ) = min






i∑

j=1

cj :
i∑

j=1

p̄j xj = ρ, xj ∈ {0, 1}, j = 1, 2, . . . , i




 (10.27)

All values of f (i, ρ) can be calculated through the following recurrence:

f (i, ρ) =
{
min{f (i − 1, ρ), f (i − 1, ρ − p̄i)+ ci} if p̄i < ρ

f (i − 1, ρ) otherwise.
(10.28)

When there are several choices (i.e., users) introducing the same amount of contribution, the
method will pick one of them randomly as the seed user. We initialize the base case f (1, ρ) as follows:

f (1, ρ) =
{
ci if ρ = p̄i ,

∞ otherwise.
(10.29)

Thus the IMDP algorithm first gets the intra-network weight matrix Ws and Wt , and constructs
the inter-network weight matrix Ws→t and Ws→t . Then the final weight matrix is built with four
components as Fig. 9.5 shows in Sect. 9.4.2. At last IMDP uses dynamic programming to identify the
optimal seed users across the networks.
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10.4.2.3 Analysis of the IMDP Algorithm
In this part, we will analyze the performance of IMDP from the theoretical perspective. We will prove
that by scaling with respect to the desired ε, and we will be able to get a solution that is at least
(1 − ε) ·OPT (the optimal solution) in polynomial time with respect to both n and 1/ε.

Lemma 10.1 The set S output by the IMDP satisfies

σ (S) ≥ (1 − ε) ·OPT. (10.30)

Proof Let O be the optimal seed set activating the maximum users. For any user p̄u = 2puδ 3, thus
0 ≤ pu − δp̄u ≤ δ. Therefore the profit of the optimal set O can decrease is at most nδ:

σ (O) − δ · σ̄ (O) ≤ nδ (10.31)

where σ̄ (·) denotes the influence function scaled by the factor δ.

σ (S) ≥ δ · σ̄ (O) (10.32)

≥ σ (O) − nδ = OPT − ε · pmax (10.33)

≥ (1 − ε) ·OPT (10.34)

Inspired by [34], the seed set S selected from the dynamic programming is optimal for the scaled
instance and therefore must be at least as good as choosing the set O with the smaller profits.

The approximation algorithm IMDP is said to be a polynomial time approximation scheme, if
for each fixed ε > 0, its running time is bounded by a polynomial in the size n. And the fully
polynomial time approximation scheme is an approximation scheme for which the algorithm is
bounded polynomially in both the size n and 1/ε. We prove that the IMDP method is a fully
polynomial approximation scheme for the ANIM problem, with the following Theorem 10.13.

Theorem 10.13 The IMDP method is a fully polynomial approximation scheme for the ANIM
problem.

Proof Since δ = (ε × pmax)/n, the running time of IMDP is O(n22pmax
δ 3) = O(n22nε 3), which is

polynomial in both n and 1/ε. As shown in Lemma 10.1, the IMDP framework can achieve a (1− ε)-
approximation of the optimal result.

10.5 Rumor Initiator Detection

This section is a follow-up problem based on the MFC diffusion model introduced in Sect. 9.3.2
based on signed networks. Rumor initiation and incorrect information dissemination are both common
in social networks [44]. Incorrect rumors sometimes can bring about devastating effects, and an
important goal in improving the credibility of the social channel is to identify rumor initiators
[35, 41, 43, 44] in signed social networks. This section studies the detection of rumor initiators in
infected signed social networks, given the state of the network at a specific moment in time.

To identify the rumor initiators, we study the problem based on the MFC diffusion model
introduced in Sect. 9.3.2. Although the exact identification of the rumor initiators is NP-hard for
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general graphs, but it can be resolved in polynomial time for binary tree structured networks, and
it provides the insights for high quality solutions in the general case. We leverage these insights to
introduce the RID framework [51] to identify the optimal rumor initiators, including their number,
identities, and initial states. The readers are suggested to read this section together with Sect. 9.3.2
introduced in the previous chapter. Here, we will not introduce the definitions of the weighted
signed social network and weighted signed diffusion network concepts again, the readers may refer to
Sect. 9.3.2 for more information.

The social psychology literature defines a rumor as a story or a statement in general circulation
without confirmation or certainty of facts [2]. The originators of rumors are formally defined as rumor
initiators, which can be individuals, groups, or institutes. In this section, we refer to rumor initiators as
the users who initially spread the rumor to other users in online social networks. Within the diffusion
networks, rumors can spread from the initiators to other users via diffusion links, which will lead
to infected signed diffusion networks. Since all networks studied in this section are all weighted and
signed by default, we will refer to them as diffusion networks for simplicity.

Definition 10.8 (Infected Diffusion Network) The infected diffusion networkGI = (VI , EI , sI , wI )

is a subgraph of the complete diffusion network GD , where VI ⊆ VD is the set of infected users,
EI ⊆ ED is the set of potential diffusion links among these infected users. sI , wI are the sign and
weight mappings, whose domains are all those diffusion links in EI .

Definition 10.9 (Activation Link) Among all the links EI in the infected diffusion networks, link
(u, v) is called an activation link iff u activates v in the screenshot of the infected diffusion network.

Based on theMFCmodel introduced before, each node in the infected diffusion network screenshot
can be activated by exactly one node via the activation link and the rumor initiators have no incoming
activation links. As a result, all the nodes in VI together with the activation links among them can
actually form a set of cascade trees, where nodes at higher levels are activated by nodes in the lower
levels and rumor initiators are the roots (at level 1).

In this section, our main goal is to work backwards from the available state of the network given
at any moment in time, and we will use the developed diffusion model to track down the rumor
initiators. Let I ⊆ VI ⊆ V be the potential set of rumor initiators, whose initial states towards the
rumor can be represented as S = {+1,−1}|I|, where+1 indicates a belief in the fact at hand, and −1
denotes belief in the opposite fact. We use binary modes of information propagation because of its
relative simplicity and intuitive appeal in modeling a variety of situations. The ISOMIT problem aims
at inferring the optimal rumor initiator set I∗ as well as their initial states S∗, which can maximize
the likelihood that it will lead to the current state of the infected signed network GI :

I∗,S∗ = argmax
I,S

P(GI |I,S), (10.35)

Here, P(GI |I,S) represents the likelihood of obtaining the infected network GI based on the
influence propagated from I with states S .

Formally, we will call the above problem as the “Infected Signed netwOrk ruMor Initiator
deTection” (ISOMIT) problem. In summary, the input of the ISOMIT problem is the infected signed
network GI , while the objective output is the inferred rumor initiators I together with their initial
states S which can maximize the likelihood P(GI |I,S).
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10.5.1 The ISOMIT Problem

Given the rumor initiators I together with their initial states S , influence can propagate from them
to other users in the network via different paths. For any user u in the infected network, the influence
propagation paths from initiators to u can be represented as the set {P(ui, u)}ui∈I , where P(ui, u)

represents the set of paths from initiator ui to user u specifically. Each path (e.g., p ∈ P(ui, u)) is a
sequence of directed diffusion links from ui to u. We use the notation (x, y) ∈ p to denote the fact
that the diffusion link (x, y) lies on path p. Depending on the sign of link (u, v) as well as the states
of u and v, link (u, v) can be either sign consistent or sign inconsistent.

Definition 10.10 (Sign Inconsistent Diffusion Link) Diffusion link (u, v) is defined to be sign
inconsistent if s(u) · s(u, v) ,= s(v).

The probability that u ∈ V is infected with state s(u) because of influence from the initiators I
with state S can be computed as

P (u, s(u)|I,S)

= 1 −
∏

i∈I

∏

p∈P(i,u)



1 −
∏

(x,y)∈p
g (s(x), sI (x, y), s(y), wI (x, y))



 , (10.36)

where the function

g (s(x), sI (x, y), s(y), wI (x, y))

=






min{1,α · wI (x, y)}, if s(x) · sI (x, y) = s(y), sI (x, y) = +1,

wI (x, y), if s(x) · sI (x, y) = s(y), sI (x, y) = −1,

0, if s(x) · sI (x, y) ,= s(y).

(10.37)

Consider a link (x, y) lying on the path from rumor initiators in I to u, such that states of x and
y are consistent (i.e., s(x) · sI (x, y) = s(y)). In such a case, the probability of link (x, y) being
an activation link would be min{1,α · wI (x, y)} if (x, y) is a positive link (due to the boosting of
positive links in MFC model), and it would be wI (x, y), otherwise. However, in case of inconsistency
(i.e., s(x) · sI (x, y) ,= s(y)), link (x, y) will be either not an activation link or was an activation link
originally but y’s state is flipped by some other nodes. In other words, y would not be activated by x

in the screenshot of the infected diffusion network, and the g(·) is assigned with value one in the sign
inconsistent case.

One can model the probability of the current state of the infected signed network GI , conditional
on the rumor initiators I with initial states S as follows:

P(GI |I,S) =
∏

u∈VI

P (u, s(u)|I,S) . (10.38)

10.5.2 NP-Hardness of Exact ISOMIT Problem

Based on the aforementioned remarks, we will show that obtaining the whole infected networks
exactly based on I and S achieving 100% inference probability with minimum number of rumor
initiators is an NP-hard problem.
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Lemma 10.2 Based on the MFC diffusion model, the ISOMIT problem of achieving probability
P(GI |I,S) = 1 with the minimum number of initiators is NP-hard.

Proof We will prove the lemma by showing that the set-cover problem (which is known to be
NP-hard) can be reduced to the ISOMIT problem in polynomial time. Formally, given a set of elements
E = {e1, e2, . . . , en} and a set of m subsets of E , L = {L1,L2, . . . ,Lm}, where Li ⊆ E, i ∈
{1, 2, . . . , m}. The set-cover problem aims at finding as few subsets as possible from L, so that the
union of the selected subsets is equal to E , i.e.,

⋃
Li = E [21].

For an arbitrary instance of the set-cover problem, we define an instance of the infected signed
graph to be a directed graph, denoted by GI . The graph GI contains n + m + 1 nodes: (1) for each
element ei ∈ E , we construct a corresponding node ni ; (2) for each set Lj ∈ L, we construct node
nj+n; and (3) a dummy node d (i.e., the (n + m + 1)th node) is added to the infected network.
The links in GI include: (1) for all the elements in each set, e.g., ei ∈ Lj ), we add a directed link
connecting their corresponding nodes in the graph from ni to nj+n; (2) all the corresponding nodes
of elements in E are connected to d via a directed link; and (3) d connects to the corresponding
nodes of sets in L by directed links as well. The signs of all these links are all assigned +1, whose
weights are: (1) w(ni, nj+n) = 1, for ∀ei ∈ E , ∀ei ∈ Lj ,Lj ∈ L; (2) w(ni, d) = 1

n , for ∀ei ∈ E ;
(3) w(nj+n, d) = 1, for ∀Lj ∈ L.

Now, we want to activate all the nodes in GI with state +1 (i.e., all trust the rumor) with as few
rumor initiators as possible. Based on GI , the solution to the ISOMIT problem will be equivalent to
the set-cover problem based on elements E and subsets L.

10.5.3 A Special Case: k-ISOMIT-BT Problem

In the previous section, the ISOMIT problem of achieving probability 100%with the minimum number
of initiators is proven to be NP-hard. In this part, we will study a special case of the ISOMIT problem,
where the number of rumor initiators is known to be k and the network is a binary tree, i.e., the k-
ISOMIT-BT (k ISOMIT on Binary Tree) problem. We will show that the k-ISOMIT-BT problem can
be addressed efficiently in polynomial time. This will also provide the insight needed to solve the
general case to be introduced in the next section.

Let TI = (VI , EI , sI , wI ) be an infected signed binary tree. If the user node u ∈ VI is regarded as
the root in the tree, its left and right children can be represented as lef t (u) and right (u), respectively.
At the beginning, the rumor initiator set and the state set is empty, i.e., I = ∅ and S = ∅. The cost of
the optimal solution (i.e., the inferred initiators I and states S) can be recursively computed with the
following dynamic programming equation:

OPT(u, I,S, k) = max
{

k
min
m=0

{
OPT

(
lef t (u), I,S,m

)
+OPT

(
right (u), I,S, k − m

)
+ P
(
u, s(u)|I,S

)}
; (10.39)

P
(
u, s(u) = +1|I ∪ {u},S ∪ {s(u) = +1}

)
+

k−1
min
m=0

{
OPT

(
lef t (u), I ∪ {u},

S ∪ {s(u) = +1},m
)
+OPT

(
right (u), I ∪ {u},S ∪ {s(u) = +1}, k − 1 − m

)}
; (10.40)
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P
(
u, s(u) = −1|I ∪ {u},S ∪ {s(u) = −1}

)
+

k−1
min
m=0

{
OPT

(
lef t (u), I ∪ {u},

S ∪ {s(u) = −1},m
)
+OPT

(
right (u), I ∪ {u},S ∪ {s(u) = −1}, k − 1 − m

)}}
. (10.41)

From root u, the optimal rumor initiator detection can generally follow one of three cases:

• u is not the initiator: The root u is not added to the rumor initiator set, and we make recursive calls
with its left and right children nodes to identify the k rumor initiators.

• u is the initiator with state s(u) = +1: The root u and its state are added into the rumor initiator
set and the state set, respectively (i.e., I ∪ {u}, and S ∪ {s(u) = +1}). Furthermore, we make
recursive calls with its left and right children nodes to identify the remaining k−1 rumor initiators
based on the updated rumor initiator and their state.

• u is the initiator with state s(u) = −1: The root u and its state are added into the rumor initiator
set and state set, respectively (i.e., I ∪ {u}, and S ∪ {s(u) = −1}). Furthermore, we make recursive
calls with its left and right children nodes to identify the remaining k− 1 rumor initiators based on
the updated rumor initiator and their state.

The formal definition of P(u, s(u)|I,S)} is available in Sect. 10.5.1. Meanwhile, the special case
P(u, s(u)|{u}, {s(u)}), for a single node u, is computed as follows:

P(u, s(u)|{u}, {s(u)}) =
{
1, if sI (u) = s(u);
0, if sI (u) ,= s(u),

(10.42)

where sI (u) is the real state of u in the infected network.
The aforementioned dynamic programming objective function can be addressed in polynomial

time, and we will not introduce the details involved in solving it here due to the limited space.

10.5.4 RIDMethod for General Networks

For the ISOMIT problems in social networks of general structure and an unknown number of rumor
initiators, the method introduced in the previous section cannot be directly applied. In this section,
we will introduce the RID framework to address the ISOMIT problem. We propose to first detect the
infected connected components from the whole network. For each detected connected component, we
propose to further prune the non-existing activation links among users to extract the “infected cascade
trees” in the signed networks. From each infected cascade tree, we introduce the objective function to
detect the optimal rumor initiators (the number, identities as well as their states).

10.5.4.1 Infected Connected Components Detection
The infected diffusion network can contain multiple infected connected components, where users in
each component can be connected to each other via potential diffusion links among them. In this part,
we will introduce the method to detect the infected connected components from the network.

Definition 10.11 (Infected Connected Components) An infected connected component is a sub-
graph of the infected network and, by ignoring the directions of diffusion links, any two vertices in
the component are connected to each other.
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The signed connected components in the pruned networks can be detected with algorithms, like
breadth-first search (BFS) [15] and depth-first search (DFS) [15], in linear time. For instance, based on
the BFS algorithm, we will loop through all the infected vertices in the pruned infected signed network
and once we reach an unvisited vertex, e.g., u, we will call BFS function to find the entire connected
component containing u. The time cost of BFS-based connected component detection algorithm will
beO(n+m), where n andm are the numbers of user nodes and diffusion links in the infected diffusion
network.

10.5.4.2 Signed Infected Cascade Forest Extraction
Let C = {C1, C2, . . . , Cl} be the set of l connected components detected in the pruned infected
signed network. As introduced earlier, the real information diffusion process in the infected connected
component based on MFC can form a set of infected cascade trees. We show how to extract such trees
later in this section.

Definition 10.12 (Infected Cascade Tree) The signed infected cascade tree summarizes the state of
the information propagation and user activation process in the network. Let T = (VT , ET , s, w) be a
signed infected cascade tree. The node set VT ⊆ VD consists of all the infected users in the tree and
the directed activation link (u, v) ∈ ET ⊆ ED if and only if u succeeds in activating v.

The signed infected cascade trees can be inferred from the infected network, and we propose
to extract the trees capturing the most information (i.e., the most likely trees) for each connected
component. Let Ci = (VCi , ECi , s, w) be a detected connected component consisting of multiple
infected cascade trees, and let T = (VT , ET , s, w) be one of the trees extracted from Ci , where
VT ⊆ VCi and VT ⊆ VCi . The likelihood of tree T is L(T ) = ∏(u,v)∈ET w(u, v). Furthermore, the
optimal infected cascade tree T ∗ in Ci can be defined as:

T ∗ = argmax
T ∈T

L(T ), (10.43)

where T denotes the set of all potential trees that can be detected from component Ci . The maximum
likelihood infected cascade trees can be extracted using the Chu-Liu/Edmonds’ algorithm [14, 20]
from the directed connected components. The pseudo-code of the infected cascade trees extraction
method is available in Algorithm 8, which will call the functions in Algorithms 6 and 7 to get the
maximum weight spanning graphs and resolve the circles in the graph.

10.5.4.3 Rumor Initiator Inference
Based on the methods introduced in the previous sections, we are able to detect a set of diffusion
trees from the network, the roots of which without incoming edges represent the rumor initiators.
Meanwhile, besides the roots, multiple rumor initiators can co-exist in one infected cascade tree.
In other words, the number of extracted diffusion trees is a lower bound on the number of rumor

Algorithm 6 Maximum weight spanning graph (MWSG)
Require: Graph G = (V, E, s, w)
Ensure: Maximum weight spanning graph G′ = (N ,L, w)
1: initialize node set N = ∅, link set L = ∅
2: for u ∈ V \N do
3: N = N ∪ {u}
4: find edge e = argmaxe∈E w(e)
5: L = L ∪ {e}
6: end for
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Algorithm 7 Contract circles (CC)
Require: Graph containing circles G = (N ,L, w)
Ensure: Contracted graph without circles G′ = (N ′,L′, w′)
1: L′ = ∅ and new link weight mapping w′

2: for each circle O = (NO,LO) in (N ,L) do
3: contract all nodes in O into a pseudo-node uo
4: for each link (ux, uy) ∈ L do
5: if ux /∈ NO and uy ∈ NO then
6: L′ = L′ ∪ {(ux, uo)}
7: w′(ux, uo) = w(ux, uy) − w(π(uy), uy), where (π(uy), uy) ∈ L is the link with the maximum weight

linked to uy
8: else
9: if ux ∈ NO and uy /∈ NO then
10: L′ = L′ ∪ {(uo, uy)}
11: w′(uo, uy) = w(ux, uy)
12: else
13: L′ = L′ ∪ {(ux, uy)}
14: w′(ux, uy) = w(ux, uy)
15: end if
16: end if
17: end for
18: end for

Algorithm 8 Infected cascade trees extraction
Require: infected connected component set C
Ensure: infected cascade tree set T
1: initialize tree set T = ∅
2: for component Ci = (VCi , ECi , sCi , wCi ) ∈ C do
3: (N ,L, w) = MWSG(Ci )
4: if (N ,L, w) contains circles O then
5: (N ′,L′, w′) = CC(N ,L, wCi )
6: (N ′,L′, w′) = MWSG((N ′,L′, w′))
7: end if
8: for circle O ∈ O do
9: for link (ux, uo) ∈ L′ do
10: get the corresponding link (ux, uy), where uy is in the circle
11: remove link (π(uy), uy) from L to break the circle O
12: end for
13: end for
14: T = T ∪ {(N ,L)}
15: end for

initiators. The detected cascade tree can actually be partitioned into several isolated sub-trees
instead. The roots of these sub-trees provide additional candidates for being rumor initiators. Such
a partitioning process can be achieved with the algorithm introduced in Sect. 10.5.3 effectively.
However, the extracted infected cascade trees from the infected signed network may not necessarily
be binary trees, and this can be very complex to deal with [35]. Next, we propose to transform each
cascade tree into a binary tree first and then identify the optimal rumor initiators.

To transform a general tree into a binary tree without distorting information about the relative
influence relationships, we propose to add extra dummy nodes to the trees, which have no effect on
information diffusion, and they cannot be selected as rumor initiators.

Example 10.2 For example, in Fig. 10.3, the tree in the left figure is not a binary tree, where the root
node has three children nodes. To transform it into a binary tree, between the root and its children,⌈
log2 3

⌉
extra nodes are added to the tree as the root’s new children and the root’s children nodes are
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Fig. 10.3 Example of the
binary tree transformation

assigned as the new nodes’ children. These newly added nodes will not participate in the information
diffusion and they cannot be selected as rumor initiators.

Meanwhile, to avoid the case of having too many rumor initiators (e.g., every user in the component
is a rumor initiators), we will add a penalty term to constrain the number of detected rumor initiators.
For each tree T ∈ T rooted at u, we can represent the optimal rumor initiators I∗ of size k∗ with
initial state S∗ as follows:

k∗, I∗,S∗ = arg min
k,I,S

−OPT(u, I,S, k)+ (k − 1) · β, (10.44)

Here, parameter β denotes the penalty of each introduced rumor initiator and term (k − 1) represents
the extra initiators detected besides the original root of tree T . Function OPT(u, I,S, k) can be
computed with the dynamic programming based method introduced in the previous section. By
enumerating k from 1 to the number of nodes in T (i.e., |VT |), we are able to obtain the optimal
solution of the above objective function. However, such a process can be very time consuming. To
balance between the time cost and quality of the result, we propose to increase k from 1 to |VT | and
stop once the increase in k cannot lead to increase in the objective function.

10.6 Summary

In this chapter, we talked about the viral marketing problem and provided an introduction to several
viral marketing algorithms for seed user selection based on various learning settings. The viral
marketing problem is formulated as an optimization problem, which aims at selecting the optimal
seed user set, who can maximize the impact in the information diffusion process.

Based on the classic information diffusion models, like LT and IC, we introduced two viral
marketing algorithms, greedy and CELF, to pick the seed users. The greedy algorithms will select
the seed user with multiple rounds, where the users who can introduce the maximum influence gain
will be added into the seed user set in each round. To resolve the high time cost problem, CELF uses
a heap data structure to keep record of the users’ influence, and the heap structure will be updated
dynamically in the seed user selection process. To further lower down the time complexity, we also
introduced two algorithms based on heuristics, where one is based on the node centrality and the other
one is based on degree discount, respectively.

In the multi-product information diffusion setting, the products may have intertwined relationships
with each other, including independent, competing, and complimentary, respectively. Depending on
the promotion orders of the other products and the target product, we categorized the viral marketing

jwzhanggy@gmail.com



10.7 Bibliography Notes 381

problem in such a learning setting into the C-TIM and J-TIM, respectively. To resolve the problem, the
C-TIER and J-TIER algorithms were introduced in this chapter.

To study the viral marketing problem across multiple aligned social networks, we introduced the
M&M diffusion model. Based on a set of meta paths, M&M defines the multi-relational network
with the meta path concept, based on which the viral marketing problem is addressed with a greedy
algorithm. Meanwhile, based on the IPATH diffusion model, we introduced a dynamic programming-
based seed user selection algorithm named IMDP.

At the end of this chapter, we talked about the rumor initiator detection problem. Given an infected
network, the rumor initiator detection problem aims at identifying the rumor initiators IDs, numbers,
and initial status concurrently. By assuming that the rumor diffusion process is based on the MFC
model, to address the problem, we introduced a multi-phase rumor initiator detection algorithm, which
partitions the infected network into several components and further identifies the rumor initiators from
them with a dynamic program algorithm.

10.7 Bibliography Notes

Viral marketing (i.e., influence maximization) problem in customer networks first proposed by
Domingos et al. [19] has been a hot research topic. Richardson et al. [42] study the viral marketing
based on knowledge-sharing sites and propose a new model which needs less computational cost
than the model proposed in [19]. Kempe et al. propose to study the influence maximization problem
through a social network [29] and propose two different diffusion models: independent cascade (IC)
model and linear threshold (LT) model, which have been widely used in later influence maximization
papers. Zhan et al. propose to extend the traditional single-network viral marketing problem to
multiple aligned networks in [47].

Meanwhile, the promotions of multiple products can exist in social networks simultaneously, which
can be independent, competing, or complementary. Datta et al. [17] study the viral marketing for
multiple independent products at the same time and aim at selecting seed users for each products
to maximize the overall influence. Bharathi et al. [4] propose to study the competitive influence
maximization in social networks, where multiple competing products are to be promoted. He et al. [25]
propose to study the influence blocking maximization problem in social networks with the competitive
linear threshold model. Chen et al. [13] study the influence maximization in social networks when
negative opinions can emerge and propagate. Multiple threshold models for competitive influence in
social networks are proposed in [7], whose submodularity and monotonicity are studied in details.
Meanwhile, Narayanam et al. [38] study the viral marketing for product cross-sell through social
networks to maximize the revenue, where products can have promotion cost, benefits, and promotion
budgets. Lu et al. [37] study the influence propagation and maximization problem in the setting from
competition to complementarity.

Among these works on information diffusion and viral marketing problems, rumor propagation in
online social networks is of practical importance. Kwon et al. identify characteristics of rumors by
examining temporal, structural, and linguistic aspects of rumors [33]. Rumors can spread very fast
in online social networks, and Doerr et al. propose to study the structural and algorithmic properties
of networks which accelerate such a propagation in [18]. To maximize the influence or rumors, the
diffusion of competing rumors in social networks is studied in [32].

Influence source identification in unsigned networks has been studied in the existing works. Lappas
et al. [35] propose the problem of finding effectors in social networks. In [35], the k-effectors problem
is formally defined and the time complexity of the problem for different types of graphs is analyzed
in detail. Shah et al. study similar problems in [44] to infer the sources of a rumor in a network,
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where a SIR-based rumor diffusion model is introduced. They propose to detect the rumor sources by
identifying users with high “rumor centrality,” which is also used in their computer virus sources
discovery [43]. Prakash et al. propose to study the culprits in epidemics in [41]. The underlying
structure of cascades in social networks is studied in [53].

10.8 Exercises

1. (Easy) Please try to complete the proof of the Theorem 10.8 we introduced in Sect. 10.4.1.2.
2. (Easy) Please try to complete the proof of the Theorem 10.9 we introduced in Sect. 10.4.1.2.
3. (Medium) Please try to prove Theorem 10.1 we introduced in Sect. 10.3.1.1.
4. (Medium) Please try to implement the greedy algorithm we introduced in Sect. 10.2.2.1 based

on the LT model with a preferred programming language, and test its performance with some
simulations on a toy network data set.

5. (Medium) Please try to implement the greedy algorithm we introduced in Sect. 10.2.2.1 based
on the IC model with a preferred programming language, and test its performance with some
simulations on a toy network data set.

6. (Medium) Please refer to [29], and try to prove that for the LT and IC diffusion models, their
influence function is monotone.

7. (Medium) Please refer to [29], and try to prove that for the LT and IC diffusion models, their
influence function is submodular.

8. (Hard) Based on the LT model, if adding each user into the seed user set will bring about a certain
cost, please try to consider to extend and improve the step-wise greedy influence maximization
algorithm for such a scenario.

9. (Hard) Please try to implement the CELF algorithm with a preferred programming language, and
compare its efficiency with the greedy algorithm.

10. (Hard) Please try to implement the dynamic programing algorithm introduced in Sect. 10.5.3.
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